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Abstract

The dream of finding master formula for S-matrix of TGD is 27 year old as I write this.
The realization that configuration space spinors correspond to von Neumann algebras known
as hyper-finite factors of type II; was the decisive discovery and stimulated a rapid progress
in the understanding of the mathematical structure of TGD and also the long waited master
formula for S-matrix finally saw the daylight.

This master formula made however a lot of previous work obsolete. These earlier attempts
might seem rather childish from the recent point of view which could of course look equally
childish from the perspective I perhaps have around 2010. The germs of recent vision are
however in these older attempts although strongly suppressed by cognitive noise. These older
visions contain also a lot of real stuff which complements the recent vision. For these reasons
I thought that it would not be wise to throw away this chapter. I have not added the recent
overall view about construction of S-matrix which is contained in the chapter ” Construction
of Quantum Theory” and is warmly recommended to the critical reader as a background.

The gigantic symmetries of quantum TGD are bound to lead to a highly unique S-matrix
(actually a hierarchy of S-matrices) but the practical construction of U-matrix remains still
a formidable challenge. Despite this one can write Feynman rules for the S-matrix in the
approximation that the consideration is restricted to elementary particles modelled as C'P»
type extremals. Two developments have changed the situation dramatically.

a) The first development was inspired by the idea that generalized Feynman diagrams
might allow a generalization of duality symmetry of string models meaning that the diagrams
are always equivalent with tree diagrams. The diagrams could be seen as generalization of
braid diagrams and this notion can be formulated axiomatically in terms of Hopf algebras.

b) The second development was inspired by the better understanding of the role of the
classical non-determinism of Kéahler action and led to the discovery of 7-3 duality and effective
2-dimensionality meaning that all relevant physics can be coded into 2-dimensional intersec-
tions of 3-D and 7-D light like causal determinants. This gives concrete realization for the
equivalence of generalized diagrams with tree diagrams.

1. Basic philosophy behind the construction of S-matrix

In TGD framework quantum transitions correspond to a quantum jump between two dif-
ferent quantum histories (configuration space spinor field) rather than to a non-deterministic
behavior of a single quantum history. Therefore S-matrix relates to each other two quantum
histories rather than the initial and final states of a single quantum history.

To understand the philosophy behind the construction of S-matrix it is useful to notice
that in TGD framework there is actually a ’holy trinity’ of time developments instead of single
time development encountered in ordinary quantum field theories.

a) The classical time development determined by the absolute minimization of Kéahler
action.

b) The unitary ”time development” defined by U associated with each quantum jump
and defining U-matrix. One cannot however assign to the U-matrix an interpretation as a
unitary time-translation operator and this means that one must leave open the identification
of U-matrix with S-matrix.

c¢) The time development of subjective experiences by quantum jumps identified as mo-
ments of consciousness. The value of psychological time associated with a given quantum
jump is determined by the contents of consciousness of the observer. The understanding of
psychological time and its arrow and of the dynamics of subjective time development requires
the construction of theory of consciousness. A crucial role is played by the classical nondeter-
minism of Kéhler action implying that the nondeterminism of quantum jump and hence also
the contents of conscious experience can be concentrated into a finite volume of the imbedding
space.

Quantum classical correspondence states that not only quantum states but also quantum
jump sequences and even the complex anatomy of quantum jump must have representation
at space-time level. This has far reaching implications.



a) Configuration space S-matrix or U-matrix is induced from space-time S-matrix acting
in fermionic degrees of freedom (configuration space ”spin degrees of freedom”).

b) The fact that there is an infinite number of anatomies of quantum jump connecting
given quantum states means, predicts that there is a infinite number of space-time surfaces
giving rise to the same space-time S-matrix. This is nothing but the equivalence of generalized
Feynman diagrams to tree diagrams.

c¢) Single quantum jump and thus a particular space-time S-matrix must correspond to
a finite space-time region, perhaps single space-time sheet with the maximal deterministic
regions of the space-time sheet correlating with with the anatomy of quantum jump.

2. 7-3 duality as a key to the construction of S-matriz

The notion of 7-3 duality emerged from the interaction between TGD and M-theory. The
attempts to construct quantum TGD have gradually led to the conclusion that the geometry
of the configuration space ("world of classical worlds”) involves both 7-D and 3-D light like
surfaces as causal determinants. 7-D light like surfaces X7 are unions of future and past light
cone boundaries and play a role somewhat resembling that of branes. 3-D light like surfaces
X} can correspond to boundaries of space-time sheets, regions separating two maximally
deterministic space-time regions, and elementary particle horizons at which the signature of
the induced metric changes.

7-3 duality states that it is possible to formulate the theory using either the data at 3-
D space-like 3-surfaces resulting as intersections of the space-time surface with 7-D CDs or
the data at 3-D light like CDs. This results if the data needed is actually contained by 2-D
intersections X% = X7 N X7. This effective 2-dimensionality has far-reaching implications.
It simplifies dramatically the basic formulas related to the configuration space geometry and
spinor structure, it leads to the explicit identification of the generalized Feynman diagrams
at space-time level as light like 3-D CDs. The basic philosophy is that quantum-classical
correspondence stating that space-time sheets provide a description for the physics associated
with the configuration space spin degrees of freedom (fermionic degrees of freedom).

The generalized Feynman diagrammatics is simple. The fermions do not carry four-
momenta but are on mass shell particles characterized by the eigenvalues of the modified
Dirac operator D. There is no propagator associated with 3-D CDs: only a unitary trans-
formation U, representing braiding in spin and electroweak spin degrees of freedom can be
present. Vertices are the inner products at X? for the positive energy states and negative
energy states entering to the vertex, finite, and in principle computable. The equivalence
of generalized Feynman diagrams with tree diagrams is expected on basis of the effective
2-dimensionality, and indeed follows from on mass shell property directly. Unitarity follows
trivially. No loop summations are thus involved.

The counterparts of loop sums are absent in TGD framework and p-adic number fields
and their extensions defining an infinite hierarchy of fixed point values of Kahler coupling
strength and thus of gauge coupling constants. The question is whether this discrete coupling
constant evolution can mimic a QFT type coupling constant evolution (or vice versa). Is
it possible to have renormalization without renormalization? The construction of quantum
state using generalization of coset construction for super-canonical and super Kac-Moody
algebra allows to answer this question. The counterparts of bare states are non-orthogonal
and have a natural multi-grading. Gram-Schmidt orthogonalization procedure makes the
bare states dressed and brings in TGD counterpart of loop corrections to the S-matrix. The
counterparts of renormalization group equations result by formally regarding p-adic prime p as
a continuous variable. Quantum field theory approximation results when the inner products
defining simplest particle decays are described as coupling constants.

8. Quantum criticality and Hopf algebra approach to S-matriz

Quantum criticality leads to a generalization of duality symmetry of string models stating
that the generalized Feynman diagrams with loops are equivalent with diagrams having no
loops. This means that each S-matrix element correspond to a unique tree diagram. The
conditions for this equivalence can be formulated as algebraic conditions characterizing a Hopf



algebra like structure, and, using the language of ordinary Feynman diagrams, correspond to
the vanishing of the loop corrections in the configuration space integral crucial for the p-
adicization. This symmetry is expected to be of crucial importance for practical evaluation
of S-matrix elements as should be also the reduction of the matrix elements of generators of
the enveloping algebra of super-canonical algebra to n-point functions of super-conformal field
theory in the complex plane of super-canonical conformal weights.

4. S-matriz as Glebsch-Gordan coefficients

U-matrix relates ’free’ and ’interacting’ representations of the super-canonical and Super
Kac-Moody algebras acting as symmetries of quantum T'GD. The construction is based on the
association of 3-surfaces Y;> and corresponding absolute minima X 4(Yf}) to incoming states
as well as the interacting four-surface X*(U;Y;®) describing the interactions classically. The
generators for various super-algebras associated with X 4(UiYi3) are modified by interactions
so that the generator basis is not just a union of the generator basis associated with X 4(5/;3).
U-matrix relates the tensor product for the representations associated with the incoming
'free’ space-time surfaces X*(Y;®) and the interaction representation associated with X*(UY;?):
generalized Glebch-Gordan coefficients are clearly in question and unitarity is obvious.

5. Perturbation theoretic approach to U-matrixz

This formal approach starts from the identification of U-matrix elements as Glebsch-
Gordan coefficients relating free and interacting states and tries to construct U-matrix per-
turbatively by reducing it to stringy perturbation theory. The starting point is that U-matrix
must follow from Super Virasoro invariance alone and that the condition Lo (tot)¥ = 0 (plus
the corresponding conditions for other super-Virasoro generators) must determine U-matrix.
Here Lo(tot) corresponds to the Virasoro generators associated with the interacting space-
time surface X*(U;Y;®) whereas Lo(free, ) correspond to the free generators associated with
X3(Y?). Tt is however not at all obvious whether the generators Lo(tot) are perturbatively
related to the the generators Lo(free, i) and whether U-matrix allows perturbative expansion.

6. Number theoretic approach to U-matriz

The task of assigning to the surfaces Y;> the free space-time surfaces X*(Y;?) and interacting
space-time surface X4(UiYi3) is the basic stumbling block for the construction of U-matrix.
The super-algebra generators creating the excitations of the incoming ground states are super-
algebra generators associated with UX*(Y;®) whereas the outgoing states are created by the
super-algebra generators associated with X*(U;Y;®). The surfaces X*(Y;®) correspond to the
space-time surfaces associated with infinite primes P; representing ground states of super-
conformal representations whereas X 4(U¢Yi3) corresponds to the space-time surface associated
with the infinite integer N = HZ Piki. This means that the worst part of the problem is solved.
The remaining challenge is to relate the super-algebra basis to each other.

7. Construction of the S-matriz at high energy limit

It is possible to write Feynman rules for the S-matrix in the approximation that only
CP: type extremals appear as virtual and real particles. All CP» type extremals are lo-
cally isometric with CPs itself and only the random lightlike curve is dynamical. The clas-
sical dynamics is actually isomorphic with stringy dynamics since classical Virasoro condi-
tions are satisfied. Fermions belong to the representations of Super-Kac-Moody algebra of
M* x SO(3,1) x SU(3) X U(2)ew. The classical nondeterminism of the dynamics implies that
Feynman graph expansion is topologized. This saves from the troubles caused by fermionic
divergences since the exponent of the momentum generator effecting translation along the line
of the Feynman graph corresponds to that associated with the modified Dirac action and thus
to a free quantum theory for fermions.

Vertex operators V(a,b,c) are generalizations of the vertex operators of string theory:
instead of strings 3-surface inside C'P» type extremal fuse together. Propagator factors are
products of the exponent of the Kahler action for C'P, type extremal proportional to the vol-
ume of the C'P, type extremal; the ’stringy’ 1/(Lo + i€) factor, which comes from the vertices;



and a unitary translation operator (counterpart of S-matrix as time translation operator)
along the geodesic representing average cm motion.

The theory has some features which are characteristic for quantum TGD.

a) One can assume that each quantum jump involves localization in zitterbewegung degrees
of freedom. The resulting S-matrix is independent of the choice of the representative for
the zitterbewegung orbit as long as the cm motion connects the lines of the vertices. The
predictions depend however on an arbitrary function of U of C'P, coordinates giving rise to
a decomposition of C'P, to ’time slices’. The dependence of the propagator is only through
the volume of CP» type extremal determined by U whereas coupling constants have more
complicated, but presumably very mild dependence on U. The dependence on the function U
means that one must average the scattering rates over the allowed spectrum of functions U.
This dependence of the fundamental coupling constants on U is in accordance with spin glass
analogy and means that fundamental coupling constants are not strictly speaking constants.

b) The volume of the internal line, which is a fraction of C' P> volume determines the value
of the exponent of Kéhler action and provides thus a suppression factor serving as an infrared
cutoff. A constraint to the allowed functions U results from the topological condensation of
C'P; in particle like space-time sheet (for instance, massless extremal), which implies that C P>
type extremals cannot extend outside the region with size of order p-adic length scale L,. The
only plausible interpretation seems to be that the information about the infrared cutoff length
scale is coded into the structure of particle: particle in the box is quite not the same as free
particle. This suggests new view about color confinement: quarks and gluons correspond to
CP, type extremals which cannot exist too long time as free particles and therefore cannot
leave hadron.

1 Introduction

The dream of finding master formula for S-matrix of TGD is 27 year old as I write this. The real-
ization that configuration space spinors correspond to von Neumann algebras known as hyper-finite
factors of type I, was the decisive discovery and stimulated a rapid progress in the understanding
of the mathematical structure of TGD and also the long waited master formula for S-matrix finally
saw the daylight.

This master formula made however a lot of previous work obsolete. These earlier attempts
might seem rather childish from the recent point of view which could of course look equally childish
from the perspective I perhaps have around 2010. The germs of recent vision are however in these
older attempts although strongly suppressed by cognitive noise. These older visions contain also
a lot of real stuff which complements the recent vision. In particular, the section ” Approximate
construction of S-matrix” is to a surprisingly high degree consistent with master formula”. For
these reasons I thought that it would not be wise to throw away this chapter. I have not added the
recent overall view about construction of S-matrix which is contained in the chapter ” Construction
of Quantum Theory” [C1] and is warmly recommended to the critical reader as a background.

1.1 The problem

The enormous symmetries of quantum are bound to lead to a highly unique S-matrix but the
practical construction of S-matrix is a formidable challenge and necessitates deep grasp about
the physics involved so that one can make the needed approximations. The evolution of the ideas
related to S-matrix involves several side-tracks and strange twists characteristic for a mathematical
problem solving when a direct contact with the experimental reality is lacking. The work with S-
matrix has taught me that principles are more important than formulas and that the only manner
to proceed is from top to bottom by gradually solving the philosophical problems, identifying all the
relevant symmetries and understanding the horribly nonlinear dynamics defined by the absolute
minimization of Kahler action.



The poor understanding of the philosophical issues has led to frustratingly many candidates
for S-matrix. TGD inspired theory of consciousness has however gradually led to a clarification
of various issues and it seems that it is safer to distinguish between two matrices: U-matrix and
S-matrix. Moreover, it seems that one must talk in plural: there is entire hierarchy of U-matrices
and S-matrices correspond to higher levels of the hierarchy.

1. U-matrix is much more fundamental object than S-matrix conventionally defined as time-
translation operator and characterizes what happens in single quantum jump ¥; — U¥; —
Vs A good candidate for U-matrix is as Glebsch-Gordan coefficients relating free and
interacting Super Virasoro representations.

2. Quantum measurement theory requires 1-1 correlation between the values of zero modes
representing macroscopic classical variables and quantum fluctuating degrees of freedom.
This implies the required localization in zero modes without which one would encounter
problems with infinities since the Gaussian exponent making possible sensible definition of
the functional integral over zero modes is lacking as is lacking. On the other hand, Gaussian
would give Gaussian determinant introducing also infinite factor. The U-matrix associated
with the fiber degrees of freedom in turn decomposes into a tensor product of the local
U-matrices associated with various space-time sheets. The tensor factor of U describing
dynamics in super Kac-Moody conformal degrees of freedom for a given space-time sheet
could correspond to the TGD counterpart of the stringy S-matrix.

3. The new view about sub-system forced by the many-sheeted space-time and the integration
of quantum jump sequences to single quantum as far as conscious experience is considered,
suggests that one must introduce entire hierarchy of U-matrices corresponding to p-adic
length scale hierarchy and hierarchy of durations for sequences of quantum jumps. The
identification as S-matrices is natural since the duration of quantum jump sequence allows
identification as counterpart for the duration of time evolution associated with S-matrix in
standard physics. Actually subjective time duration is in question and corresponds only in
a statistical sense to a definite duration of geometric time. In particular, one expects that
these higher level U-matrices do not provide only an approximate description of something
more fundamental but express all that can be said and tested by conscious observer.

4. The hierarchy of p-adic number fields and their extensions of increasing dimension should
correspond to the hierarchy of U-matrices. This means that the matrix elements of S-matrix
should be in extensions of rationals defining finite-dimensional extensions of p-adic numbers
possibly involving transcendentals. This would mean that S-matrix theory becomes number
theory at the deepest and most challenging level one can imagine.

The lack of explicit formulas for S-matrix elements have been the basic weakness of quan-
tum TGD approach as compared to the concrete perturbative formulas provided by super-string
approach. Fortunately, the new number theoretic vision leads to concrete Feynman rules for S-
matrix in the approximation that elementary particles can be regarded as C'P; type extremals. Of
course, this is only small piece of quantum TGD but certainly the most important one as far as
the empirical testing of the theory is considered.

1.2 The fundamental identification of U- and S-matrices

Single quantum jump corresponds to the sequence

U, UV — ..Uy .



U does not certainly correspond to a genuine time-development in the sense of a unitary time
translation operator. A good guess is that U has interpretation as Glebsch-Gordan coefficients
between free an interacting representations of Super Virasoro algebra associated with surfaces
U; X4(Y;?) and X4(U,;Y;?). For a given unentangled subsystem (subsystem in self-organizing self-
state) the eigen states of the density matrix of the subsystem becoming unentangled in quantum
jump determines what are the final states of the quantum jump. Negentropy Maximization Princi-
ple states that the subsystem of unentangled subsystems whose measurement gives rise to maximal
entanglement negentropy gain, is quantum measured. U is much more fundamental object than
S-matrix. If subsystem is entangled then in a reasonable approximation nothing happens to it
during quantum jump sequence and the sub-quantum history remains unchanged.
What could then be the interpretation of S-matrix in this framework?

1. The first glance to the problem is based on macro-temporal quantum coherence. If the
dissipative effects caused by the state function reductions and state preparations are absent
completely or are not visible in the time resolution defined by the duration of macro-temporal
quantum coherence, one might expect that S-matrix is product of U-matrices occurred during
the period of the macro-temporal quantum coherence. The system in self state would indeed
effectively behave like its own Universe. One could say that time-evolution is discretized with
C P, time defining the duration of the chronon.

2. Observer is represented by a cognitive space-time sheet drifting towards the geometric future
quantum jump by quantum jump along material space-time sheet. Observer is basically
interested in the unitary time development induced by the time-translation operator Py
associated with the modified Dirac operator. This time development can have any duration
T and defines time evolution operator exp(iPyT) if subsystem develops as essentially free
system. The measurement of the scattering probabilities defined by S-matrix corresponds to
a construction of an empirical arrangement guaranteing that quantum measurement observed
by (the sufficiently intelligent!) cognitive space-time sheet at time ¢ = T reduces the quantum
state to some of the state of the initial state basis at time ¢ = 0. In the ideal situation the
measured system would develop unitarily during this interval and stay thus entangled so that
it cannot self-organize by quantum jumps.

This picture would suggest that the S-matrix could be defined as a generalization of the exponential
exp(iPyT) of the second quantized Poincare energy operator Py associated with the modified Dirac
action for the interacting space-time surface X*(U;Y;?) and acts on the tensor product of the state
spaces associated with X4(Y;?). This picture might make sense at the limit when wave mechanics
is a good approximation but does not work in elementary particle length scales where C'P, type
extremals whose Mi projection is a random light like curve, are expected to dominated.

Interacting space-time surfaces defined by a connected sum of C'P, type extremals can be
regarded as a Feynman graph with lines thickened to 4-manifolds. This suggests the assignment
of the exponent with the internal lines of the generalized Feynman graph acting as translation
operators whereas vertices where lines join give rise to vertex operators which can be regarded as
Glebch-Gordan coefficients for super-Kac-Moody representations.

Since the Hamiltonian in question is quadratic in oscillator operators, the theory is free in
the standard sense of the word, and it is only the absolute minimization of Kéhler action which
induces interactions and makes the theory nontrivial. Feynman diagram structure has purely
topological origin. For instance, topological sums of C'P, type extremals can be regarded as an
example of Feynman diagrams with lines thickened to 4-manifolds. The absence of interaction
terms guarantees that there are no sources of divergences. For the C'P» type extremals one can
develop rather detailed form of the Feynman rules.

TGD inspired theory of consciousness suggests that one should not take too dogmatic view
about S-matrix as a summary for the predictions of quantum theory. Even the idealizations



about experimental situation involved with the S-matrix formalism might be quite too strong
since experimental observations are always about subsystems.

1.3 Super conformal symmetries and U-matrix

Super-canonical and super Kac-Moody symmetries should dictate also the dynamics of the theory
to a very high degree. As already explained [B4, C1], super Kac-Moody conformal symmetries act
as conformal transformations in the complex plane containing super-canonical conformal weights
as punctures. This means that the expectation values of the elements of the enveloping algebra of
super-canonical algebra can be interpreted as n-point functions of a conformal field theory. This
must have deep implications for the calculability of the theory.

For instance, the model for a scalar field propagator defined as a super-canonical partition
function [C5] leads to highly non-trivial new physics predictions. The expectation is that all
massive states are accompanied by an infinite number of resonances which do not correspond
to poles but delta function like singularities and have a universal mass spectrum determined by
the zeros of Zeta. p-Adic length scale defining the cutoff length scale appears explicitly in the
propagator and also cutoff in the number of non-trivial zeros of Riemann Zeta characterizing the
sub-algebra of super-canonical algebra is necessary. This cutoff can be interpreted physically as
being related to phase resolution. The model for scalar propagator seems to generalize to the case
of stringy propagator in a rather straightforward manner. In this chapter this generalization is not
however discussed explicitly.

This U-matrix defined in terms of the operators representing translation along the lines of
Feynman diagrams constructed from C P, type extremals could indeed correspond to the TGD
counterpart of string model S-matrix. The construction of S-matrix should reduce more or less to
that encountered in super string models. It is even possible that the two-dimensional commutative
sub-manifolds of space-time surface might effectively represent space-time surfaces so that at this
limit TGD would reduce to super-string model type theory.

One can indeed formulate the Feynman rules for S-matrix when elementary particles are mod-
elled as C'P; type extremals (this took 23 years of hard work!). Various properties of the CP» type
extremals allow to reproduce the Feynman diagrammatics of quantum field theories topologically.
There are however some important the from standard physics basically due to the non-determinism
of C'P, type extremals and implying that self-organization is present already in elementary parti-
cle length scales. Infrared cutoff is coded automatically by the intrinsic characteristics of the C'P;
type extremals representing virtual particles: particle stays in box, not because of the boundary
conditions but because the command of staying in box is coded into the structure of the particle.
One can understand color confinement elegantly as being due to this kind of ’learned’ infrared
cutoff. One can say that even elementary particles resemble living creatures in the sense that they
can adapt to the surrounding world and p-adic length scale hierarchy represents a hierarchy of this
kind of adaptations.

Spin glass analogy at the quantum level means that the predictions for the scattering rates must
be averaged over an ensemble of quantum field theories with propagators and coupling constants
depending on an arbitrary function of C'P, coordinates.

1.4 7-3 duality, conformal symmetries, and effective 2-dimensionality

Thanks to the non-determinism of Kéhler action, also light like 3-surfaces X} of space-time surface
appear as causal determinants (CDs). Examples are boundaries and elementary particle horizons
at which Minkowskian signature of the induced metric transforms to Euclidian one. This brings
in a conformal symmetry related to the metric 2-dimensionality of the 3-D CD. This symmetry is
identifiable as TGD counterpart of the Kac Moody symmetry of string models.



The possibility of spinorial shock waves at X7 leads to the hypothesis that they correspond to
particle aspect of field particle duality whereas the physics in the interior of space-time corresponds
to field aspect. More generally, field particle duality in TGD framework states that 3-D light like
CDs and 7-D CDs are dual to each other. In particular, super-canonical and Super Kac Moody
symmetries are also dually related.

What is new that these N = 4 complex super-conformal symmetries do not give rise to global
super-symmetries, not even N = 1 supersymmetry. Second new aspect is that the solutions of
the modified Dirac equation have interpretation as generators of super gauge symmetries whereas
generalized eigen modes of the modified Dirac operator correspond to physical states and replace
off mass shell states in the formalism of standard quantum field theory.

The underlying reason for 7-3 duality be understood from a simple geometric picture in which
3-D light like CDs X intersect 7-D CDs X7 along 2-D surfaces X2 and thus form 2-sub-manifolds
of the space-like 3-surface X® C X7. One can regard either canonical deformations of X7 or
Kac-Moody deformations of X2 as defining the tangent space of configuration space so that 7-3
duality would relate two different coordinate choices for C'H.

The assumption that the data at either X3 or X 13 are enough to determine configuration space
geometry implies that the relevant data is contained to their intersection X?2. This is the case
if the deformations of X} not affecting X? and preserving light likeness corresponding to zero
modes or gauge degrees of freedom and induce deformations of X? also acting as zero modes.
The outcome is effective 2-dimensionality. One cannot over-emphasize the importance of this
conclusion. In particular, this almost implies the equivalence of all generalized Feynman diagrams
identified as space-time surfaces with initial and final states fixed and represented by 2-D surfaces
X?2. Combining this observation with the new understanding of conformal symmetries leads to
explicit Feynman rules for the space-time S-matrix which in turn induces configuration space S-
matrix to a high degree.

1.5 Number theory and U-matrices

It is becoming clear that number theory might allow very profound views about the structure of
U-matrix (or hierarchy of U-matrices).

1.5.1 U-matrices exist simultaneously in all number fields

The requirement that U-matrix exists simultaneously in all number fields when finite-dimensional
extensions of p-adic numbers are allowed, is extremely powerful. In accordance with the idea about
cognitive hierarchy, U-matrices can be assumed to form a hierarchy labelled by p-adic primes p and
by the dimensions of the extensions of p-adics. Already the construction of Cabibbo-Kobayashi-
Maskawa matrix for the mixing of quarks assuming rationality [F5] demonstrates how strong the
rationality constraint combined with simple physical inputs can be.

The basic idea is that U-matrices in different number fields are obtained by an algebraic contin-
uation from extensions of rationals defining finite-dimensional extensions of p-adic numbers. This
implies automatically pinary cutoff since the notions of p-adic and real continuity are practically
diametric opposites of each other. Also a hierarchy of extensions of p-adic numbers reflecting
increasing p-adic phase resolution emerges. This implies an infinite hierarchy of U-matrices cor-
responding to the hierarchy of p-adic number fields and their finite-dimensional extensions. The
hierarchy of phase resolutions corresponds to a hierarchy of U-matrices labelled by the number
of non-trivial zeros of Zeta appearing in the sub-algebra of the super-canonical algebra defining
physical states. These resolution hierarchies are not fictive but reflect both a genuine hierarchy
of phases of the physical system and hierarchy of cognitive structures. There are good reasons
to believe that hierarchies of type II; factors of von Neumann algebra correspond directly to the
hierarchies associated with the phase resolution since the infinite-dimensional Clifford algebra of
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configuration space gamma matrices is von Neumann algebra. This picture leads also to beautiful
connections with braid groups and quantum groups.

1.5.2 Equivalence of loop diagrams with tree diagrams and cancellation of infinities
in Quantum TGD

The work with topological quantum computation inspired a cascade of ideas leading to the vision
that generalized Feynman diagrams are analogous to knot and link diagrams in the sense that
they allow also "moves” allowing to identify classes of diagrams and that the diagrams containing
loops are equivalent with tree diagrams, so that there would be no summation over diagrams. This
would be a generalization of duality symmetry of string models.

TGD itself provides general arguments supporting same idea. The identification of absolute
minimum of K&hler action as a four-dimensional Feynman diagram characterizing particle reaction
means that there is only single Feynman diagram instead of functional integral over 4-surfaces:
this diagram is expected to be minimal one. At quantum level S-matrix element can be seen as
a representation of a path defining continuation of configuration space (C'H) spinor field between
different sectors of C'H corresponding to different 3-topologies. All continuations and corresponding
Feynman diagrams are equivalent. The idea about Universe as a computer and algebraic hologram
allows a concrete realization based on the notion of infinite primes, and space-time points become
infinitely structured monads [E10]. The generalized Feynman diagrams differing only by loops are
equivalent since they characterize equivalent computations.

The basic objection against the new view about Feynman diagrams is that it is not consistent
with the notion of coupling constant evolution involving loops in an essential manner. The ob-
jection can be circumvented. Quantum criticality requires that K&hler coupling constant ay is
analogous to critical temperature (so that the loops for configuration space integration vanish).
The hypothesis motivated by the enormous vacuum degeneracy of Kahler action is that ax has an
infinite number of possible values labelled by p-adic length scales and also also by the dimensions
of effective tensor factors defined hierarchy of 1I; factors (so called Beraha numbers) as found in
[E10].

The dependence on the p-adic length scale L,, corresponds to the usual renormalization group
evolution whereas the latter dependence would correspond to a finite angular resolution and to
a hierarchy of finite-dimensional extensions of p-adic number fields R,. The finiteness of the
resolution is forced by the algebraic continuation of rational number based physics to real and p-adic
number fields since p-adic and real notions of distance between rational points differ dramatically.
The higher the algebraic dimension of the extension and the higher the value of p-adic prime the
better the angular (or phase) resolution and nearer the p-adic topology to that for real numbers.

The proposed practical realization for the equivalence of loop diagrams with tree diagrams is
in terms of categories generalizing Hopf algebras and related structures. The basic algebra and
co-algebra axioms would state this equivalence. This requires however a modification of the notion
of Feynman diagram forced by the algebraic approach meaning that vacuum lines are allowed. In
TGD framework vacuum lines corresponding to the identity element of the algebra correspond to
vacuum extremals. In terms of ordinary Feynman diagrams the equivalence of loop diagrams with
tree diagrams means the vanishing of loops.

Concerning the construction of S-matrix this approach means that one can assign to a given
S-matrix element an infinity of mutually equivalent generalized Feynman diagrams having also
interpretation as different continuations between the sectors of configuration space characterizing
initial and final states of the reaction. The minimal tree diagram if obviously in a preferred role
as far as the actual computation of S-matrix element is considered.

The equivalence of loop diagrams with tree diagrams meaning the vanishing of Feynman graph
loop corrections is a strong constraint and there are indications that their vanishing relates very
intimately to the zeros of Riemann polyzetas and to the assumption that the zeros of Riemann
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Zeta and polyzetas characterizes the super-canonical conformal weights of particles and of their
many-particle bound states [C5].

1.5.3 Infinite primes and the construction of U-matrix

The ideas about the possible relevance of infinite primes for the construction of S-matrix are
considerably more speculative than the basic stuff discussed above. Infinite primes seem extremely
natural from the view point of consciousness theory since they imply a generalization of the notion
of number field when multiplication by infinite rationals having unit real norm is allowed. In p-adic
sense these multiplicative factors are not units. This means that the points of various number fields
would be infinitely structured but that this structure is completely invisible in real physics sense
but is absolutely essential for understanding the p-adic physics of mathematical cognition. One
could say that single space-time point becomes the Platonia and is able to represent any algebraic
structure, even the physical state of entire universe in its structure.

The original hypothesis was that infinite primes are crucial for the understanding of the space-
time physics. The hypothesis was motivated by the fact that the construction of infinite primes
has high resemblance to the quantization of an arithmetic quantum field theory. Platonia idea
corresponds to the realization of algebraic hologram in terms of infinitely structured space-time
points, whereas the original idea was to characterize the entire universe in terms of infinite primes
and rationals. The two applications are diametrical opposites of each other. If one takes the idea
of algebraic hologram and Brahman=Atman identity seriously then following considerations might
be easier to follow.

The task of assigning to the surfaces Y;? the free space-time surfaces X*(Y;?) and interacting
space-time surface X*(U;Y;?) is the basic stumbling block for the construction of U-matrix. Nothing
less that the solution of the field equations for absolute minimization of K&hler action and for
induced Dirac equation on space-time surface would be required to achieve this goal in practice.
The vision about TGD as a generalized number theory led to a dramatic understanding about
how these challenges might be solved and gives even hopes that this might be achieved at practical
level.

Space-time surfaces would be coded by infinite primes mapped to products of irreducible poly-
nomials with complex rational coefficients. The Fock states coded by the infinite primes correspond
to the states of a hyper-octonionic arithmetic quantum field theory second quantized again and
again [E3] Quantum field theory which is based on the notion of point-like particles cannot describe
quantum TGD based on generalization of particle concept. A possible interpretation of the Fock
states is as ground states of representations of super-Kac Moody algebra representations. This
view is consistent with the interpretation of the physical states as configuration space spinor fields
assigning to a given 3-surface infinite number of possible states.

U-matrix elements can be identified as matrix elements between the incoming states of super-
conformal representations created from the ground states associated with the tensor product of
the ground states associated with Y;3. The super-algebra generators creating the excited incoming
states are super-algebra generators associated with Y> whereas the outgoing states are created

1

by the super-algebra generators associated with U;Y;>. What is so beautiful that X*(Y;?) cor-
respond to space-time surfaces associated with infinite primes P; representing ground states of
super-conformal representations whereas X*(U;Y;?) corresponds to the space-time surface associ-
ated with the infinite integer N = [], Piki. This means that the worst part of the problem is
solved.

If this picture were correct, the remaining challenge would be to relate the super-algebra basis
to each other: this is necessary for both S- and U-matrix.

There is an objection against this picture. Feynman diagrammatics for C'P, type extremals
relies on the representation of both incoming and outgoing states as legs of the classical Feynman

diagram and on the interpretation of vacuum to zero energy state amplitudes as representations
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for S-matrix elements. This requires a generalization of the proposed interpretation of infinite
primes explaining why two kinds of infinite primes are needed. The two kinds of infinite primes
constructed from the vacua Vo = X + 1 interpreted as associated with positive and negative
energy states, naturally represent incoming and outgoing states in case that a zero energy state
representing S-matrix element is in question. The infinite integer associated with the zero energy
state representing S-matrix element is given by the product Ny N_ of the integers associated with
these two kinds of infinite primes. Different Feynman graphs in perturbative expansion would
represent the representations of N.N_ corresponding to different values of fiber coordinates of
CH.

1.5.4 U-matrix and arithmetic QFT defined by hyper-octonionic primes

One can assign to each infinite prime a Fock state of a super-symmetric arithmetic quantum field
theory. According to the vision discussed in [E3], hyper-octonionic primes could label single particle
states of this theory at the lowest level of the hierarchy but also bound states and interacting N-
particle states defined as infinite integers are in spectrum.

The relationship of infinite integers with the standard QFT descriptions is not obvious although
they should correspond to many particle states formed as tensor products of super conformal
representations. It would be rather surprising if this QFT would not have a deep relationship with
the QFT limit of quantum TGD. Since QFT is in question one expects that it only describes the
ground states of super Kac-Moody conformal representations. This is also required by the fact
that configuration space spinors and geometric degrees of freedom represent independent degrees
of freedom. Mass squared spectrum is integer valued for this arithmetic QFT which means that
the ground states of Super Virasoro representations can have all possible mass squared values. In
arithmetic QFT there are only two single-particle states with given four-momentum. For super
Kac-Moody Virasoro representation there exists a large number of single particle states with with
given four-momentum and their number is determined by mass squared which is essentially the
value of conformal weight.

The Fock states defined by infinite primes are not orthogonal with respect to the natural inner
product and the overlap matrix G for the states is Hermitian: G = G. The experience with the
work with Riemann hypothesis suggests that one might identify G' as the matrix 77" associated
with the U-matrix U = 1 +4T at QFT limit. This U-matrix could perhaps be related to that part
of U-matrix which describes the dynamics in zero modes.

1.5.5 p-Adic co-homology as a BRST type symmetry of the p-adic S-matrices?

The problems related to unitarity in the formal perturbative construction of S-matrix inspired the
idea that p-adicity might lead to a totally new view about S-matrix. In p-adic context unitarity
conditions of S-matrix S = 1 + 7T reads as (T — TT) + TTT = 0. The conditions T =TT, T? =0
provide in p-adic context a nontrivial solution of these conditions reducing the construction of the
S-matrix to co-homology theory. If real scattering probabilities are obtained by canonical iden-
tification followed by normalization, p-adic co-homology leads to nontrivial physical predictions.
One can construct extremely general family of solutions to p-adic co-homology, and for a while it
indeed seemed that p-adic co-homology might provide a royal road to the construction of S-matrix
in accordance with Wheeler’s ” Boundary has no boundary” intuition.

Unfortunately, the new vision about finite-p p-adic physics as physics of cognition forces to
give up this view unless p-adic co-homology makes sense for infinite-p p-adics. This does not
seem to be the case, basically because v/—1 does not seem to exist as infinite-p p-adic number.
p-Adic co-homology might however make sense for finite-p p-adic S-matrices providing cognitive
representations for quantum dynamics.
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The most natural interpretation of p-adic co-homology is as a symmetry of S-matrix: the
replacements S — S + T for p-adic S-matrix serve as analogs of BRST symmetries leaving the
predicted scattering probabilities invariant in a given resolution and these symmetries might be
of help in the actual construction of S-matrix. If p-adic probabilities summing up to zero can be
regarded as rational numbers, some of them must be negative as real numbers and do not therefore
allow frequency interpretation. One could consider the possibility that the tensor factors of p-adic
S-matrix satisfying p-adic co-homology represent what might be called imagined dynamics since
the total p-adic cross-sections vanish.

1.6 Various approaches to the construction of S-matrix

The gigantic symmetries of quantum TGD are bound to lead to a highly unique U-matrix but
the practical construction of U-matrix remains still a formidable challenge. Despite this one can
write Feynman rules for the S-matrix in the approximation that the consideration is restricted to
elementary particles modelled as C' P type extremals. This approximation might well be all that
is needed for practical purposes and leads to precise predictions.

1.6.1 7-3 duality as a key to the construction of S-matrix

The notion of 7-3 duality emerged from the (one might say violent) interaction between TGD and
M-theory [A2]. The attempts to construct quantum TGD have gradually led to the conclusion
that the geometry of the configuration space (”world of classical worlds”) involves both 7-D and
3-D light like surfaces as causal determinants. 7-D light like surfaces X7 are unions of future and
past light cone boundaries and play a role somewhat resembling that of branes. 3-D light like
surfaces X l3 can correspond to boundaries of space-time sheets, regions separating two maximally
deterministic space-time regions, and elementary particle horizons at which the signature of the
induced metric changes.

7-3 duality states that it is possible to formulate the theory using either the data at 3-D space-
like 3-surfaces resulting as intersections of the space-time surface with 7-D CDs or the data at 3-D
light like CDs [B4]. This results if the data needed is actually contained by 2-D intersections X2 =
X l3 N X7. This effective 2-dimensionality has far-reaching implications. It simplifies dramatically
the basic formulas related to the configuration space geometry and spinor structure, it leads to
the explicit identification of the generalized Feynman diagrams at space-time level as light like
3-D CDs. The basic philosophy is that quantum-classical correspondence stating that space-time
sheets provide a description for the physics associated with the configuration space spin degrees of
freedom (fermionic degrees of freedom).

The generalized Feynman diagrammatics is simple. The fermions do not carry four-momenta
but are on mass shell particles characterized by the eigenvalues of the modified Dirac operator D.
There is no propagator associated with 3-D CDs: only a unitary transformation Uy representing
braiding in spin and electroweak spin degrees of freedom can be present. Vertices are the inner
products at X2 for the positive energy states and negative energy states entering to the vertex,
finite, and in principle computable. The equivalence of generalized Feynman diagrams with tree
diagrams is expected on basis of the effective 2-dimensionality, and indeed follows from on mass
shell property directly. Unitarity follows trivially. No loop summations are thus involved.

1.6.2 Quantum criticality and Hopf algebra approach to S-matrix

Quantum criticality leads to a generalization of duality symmetry of string models stating that
the generalized Feynman diagrams with loops are equivalent with diagrams having no loops. This
means that each S-matrix element correspond to a unique tree diagram. The conditions for this
equivalence can be formulated as algebraic conditions characterizing a Hopf algebra like structure,
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and, using the language of ordinary Feynman diagrams, correspond to the vanishing of the loop
corrections in the configuration space integral crucial for the p-adicization. This symmetry is
expected to be of crucial importance for practical evaluation of S-matrix elements as should be
also the reduction of the matrix elements of generators of the enveloping algebra of super-canonical
algebra to n-point functions of a conformal field theory in the complex plane of super-canonical
conformal weights.

1.6.3 von Neumann algebras and S-matrix

The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors of type II; could provide the mathematics
needed to develop a more explicit view about the construction of S-matrix [C6].

1. Inclusions of hyper-finite I1; factors as a basic framework to formulate quantum TGD

1. The effective 2-dimensionality of the construction of quantum states and configuration space
geometry in quantum TGD framework makes hyper-finite factors of type 117 very natural as
operator algebras of the state space. Indeed, the elements of conformal algebras are labelled
by discrete numbers and also the modes of induced spinor fields are labelled by discrete
label, which guarantees that the tangent space of the configuration space is a separable
Hilbert space and Clifford algebra is thus a hyper-finite type 117 factor. The same holds true
also at the level of configuration space degrees of freedom so that bosonic degrees of freedom
correspond to a factor of type I, unless super-symmetry reduces it to a factor of type I1;.

2. Four-momenta relate to the positions of tips of future and past directed light cones appearing
naturally in the construction of S-matrix. In fact, configuration space of 3-surfaces can be
regarded as union of big-bang/big crunch type configuration spaces obtained as a union of
light-cones with parameterized by the positions of their tips. The algebras of observables
associated with bounded regions of M* are hyper-finite and of type I1I;. The algebras
of observables in the space spanned by the tips of these light-cones are not needed in the
construction of S-matrix so that there are good hopes of avoiding infinities coming from
infinite traces.

3. Many-sheeted space-time concept forces to refine the notion of sub-system. Jones inclusions
N C M for factors of type II; define in a generic manner imbedding interacting sub-systems
to a universal Il; factor which now corresponds naturally to infinite Clifford algebra of
the tangent space of configuration space of 3-surfaces and contains interaction as M : N-
dimensional analog of tensor factor. Topological condensation of space-time sheet to a larger
space-time sheet, formation of bound states by the generation of join along boundaries bonds,
interaction vertices in which space-time surface branches like a line of Feynman diagram: all
these situations could be described by Jones inclusion characterized by the Jones index
M : N assigning to the inclusion also a minimal conformal field theory and conformal theory
with k=1 Kac Moody for M : N' = 4. M : N'=4 option need not be realized physically
as quantum field theory but as string like theory whereas the limit D = 4 — ¢ — 4 could
correspond to M : AN/ — 4 limit. An entire hierarchy of conformal field theories is thus
predicted besides quantum field theory.

4. von Neumann’s somewhat artificial idea about identical a priori probabilities for states could
replaced with the finiteness requirement of quantum theory. Indeed, it is traces which produce
the infinities of quantum field theories. That M : N' = 4 option is not realized physically as
quantum field theory (it would rather correspond to string model type theory characterized
by a Kac-Moody algebra instead of quantum group), could correspond to the fact that
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dimensional regularization works only in D = 4 — e. Dimensional regularization with space-
time dimension D = 4 — € — 4 could be interpreted as the limit M : AV — 4. M as an
M : N-dimensional A-module would provide a concrete model for a quantum space with
non-integral dimension as well as its Clifford algebra. An entire sequence of regularized
theories corresponding to the allowed values of M : A would be predicted.

2. Generalized Feynman diagrams are realized at the level of M as quantum space-time surfaces

The key idea is that generalized Feynman diagrams realized in terms of space-time sheets
have counterparts at the level of M identifiable as the Clifford algebra associated with the entire
space-time surface X*. 4-D Feynman diagram as part of space-time surface is mapped to its
B =M : N < 4-dimensional quantum counterpart.

1. von Neumann algebras allow a universal unitary automorphism A — A®AA~" fixed apart
from inner automorphisms, and the time evolution of partonic 2-surfaces defining 3-D light-
like causal determinant corresponds to the automorphism N; — AYA;A~% performing a
time dependent unitary rotation for A; along the line. At configuration space level however
the sum over allowed values of ¢ appear and should gives rise to the TGD counterpart
of propagator as the analog of the stringy propagator fot exp(iLot)dt. Number theoretical
constraints from p-adicization suggest a quantization of ¢t as t = >, n;y; > 0, where z; =
1/2 + y; are non-trivial zeros of Riemann Zeta.

2. At space-time level the "ends” of orbits of partonic 2-surfaces coincide at vertices so that
also their images N; C M also coincide. The condition N; = N; = ... = N, where the
sub-factors N at different vertices differ only by automorphism, poses stringent conditions
on the values t; and Bohr quantization at the level of M results. Vertices can be obtained as
a vacuum expectations of of the operators creating the states associated with the incoming
lines (crossing symmetry is automatic).

3. The equivalence of loop diagrams with tree diagrams would be due to the possibility to move
the ends of the internal lines along the lines of the diagram so that only diagrams containing
3-vertices and self energy loops remain. Self energy loops are trivial if the product associated
with fusion vertex and co-product associated with annihilation compensate each other. The
possibility to assign quantum group or Kac Moody group to the diagram gives good hopes
of realizing product and co-product. Octonionic triality would be an essential prerequisite
for transforming N-vertices to 3-vertices. The equivalence allows to develop an argument
proving the unitarity of S-matrix.

4. A formulation using category theoretical language suggests itself. The category of space
sheets has as the most important arrow topological condensation via the formation of worm-
hole contacts. This category is mapped to the category of Il sub-factors of configurations
space Clifford algebra having inclusion as the basic arrow. Space-time sheets are mapped
to the category of Feynman diagrams in M with lines defined by unitary rotations of N;
induced by A,

1.6.4 U-matrix as Glebsch-Gordan coefficients

U-matrix relates 'free’ and ’interacting’ representations of the super-canonical and quaternio con-
formal algebras acting as symmetries of quantum TGD. The construction is based on the associ-
ation of 3-surfaces Y;> and corresponding absolute minima X*4(Y;?) to incoming states as well as
the interacting four-surface X*4(U;Y;?) describing the interactions classically. The generators for
various super-algebras associated with X*4(U,;Y;?) are modified by interactions so that the gener-

ator basis is not just a union of the generator basis associated with X*(V;?). U-matrix relates
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the tensor product for the representations associated with the incoming ’free’ space-time surfaces
X3(Y;?) and the interaction representation associated with X*4(UY;?): generalized Glebch-Gordan
coefficients are clearly in question and unitarity is obvious.

1.6.5 Number theoretic approach to U-matrix

The task of assigning to the surfaces Y;? the free space-time surfaces X4(Y;?) and interacting
space-time surface X4(U;Y;3) is the basic stumbling block for the construction of U-matrix. The
super-algebra generators creating the excitations of the incoming ground states are super-algebra
generators associated with UX?(Y;?) whereas the outgoing states are created by the super-algebra
generators associated with X4(U,;Y;?). The surfaces X*4(Y;?) correspond to the space-time surfaces
associated with infinite primes P; representing ground states of super-conformal representations
whereas X*4(U;Y;) corresponds to the space-time surface associated with the infinite integer N =
IL Pfi. This means that the worst part of the problem is solved.

1.6.6 Perturbation theoretic approach to U-matrix

This formal approach starts from the identification of U-matrix elements as Glebsch-Gordan co-
efficients relating free and interacting states and tries to construct U-matrix perturbatively by
reducing it to stringy perturbation theory. The starting point is that U-matrix must follow from
Super Virasoro invariance alone and that the condition Lg(tot)¥ = 0 (plus the corresponding con-
ditions for other super-Virasoro generators) must determine U-matrix. Here Lg(tot) corresponds
to the Virasoro generators associated with the interacting space-time surface X*(U;Y;?) whereas
Lo(free,i) correspond to the free generators associated with X3(Y;?). It is however not at all
obvious whether the generators Lg(tot) are perturbatively related to the the generators Lo(free, 1)
and whether U-matrix allows perturbative expansion.

1.6.7 Construction of the S-matrix at high energy limit

It is possible to write Feynman rules for the S-matrix in the approximation that only C'P, type
extremals appear as virtual and real particles. All C'P; type extremals are locally isometric with
CPs, itself and only the random lightlike curve is dynamical. The classical dynamics is actually
isomorphic with stringy dynamics since classical Virasoro conditions are satisfied. Fermions belong
to the representations of Super-Kac-Moody algebra of M* x SO(3,1) x SU(3) x U(2)ew. The
classical nondeterminism of the dynamics implies that Feynman graph expansion is topologized.
This saves from the troubles caused by fermionic divergences since the exponent of the momentum
generator effecting translation along the line of the Feynman graph corresponds to that associated
with the modified Dirac action and thus to a free quantum theory for fermions.

Vertex operators V(a, b, ¢) are generalizations of the vertex operators of string theory: instead
of strings 3-surface inside C'Ps type extremal fuse together. Propagator factors are products of the
exponent of the Kéhler action for C P type extremal proportional to the volume of the C'P; type
extremal; the ’stringy’ 1/(Lg + i€) factor, which comes from the vertices; and a unitary translation
operator (counterpart of S-matrix as time translation operator) along the geodesic representing
average cm motion.

The theory has some features which are characteristic for quantum TGD.

1. One can assume that each quantum jump involves localization in zitterbewegung degrees
of freedom. The resulting S-matrix is independent of the choice of the representative for
the zitterbewegung orbit as long as the cm motion connects the lines of the vertices. The
predictions depend however on an arbitrary function of U of C'P, coordinates giving rise to
a decomposition of C'P, to ’time slices’. The dependence of the propagator is only through
the volume of C'P, type extremal determined by U whereas coupling constants have more
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complicated, but presumably very mild dependence on U. The dependence on the function U
means that one must average the scattering rates over the allowed spectrum of functions U.
This dependence of the fundamental coupling constants on U is in accordance with spin glass
analogy and means that fundamental coupling constants are not strictly speaking constants.

2. The volume of the internal line, which is a fraction of C'P, volume determines the value of
the exponent of Kéahler action and provides thus a suppression factor serving as an infrared
cutoff. A constraint to the allowed functions U results from the topological condensation of
CP, in particle like space-time sheet (for instance, massless extremal), which implies that
CP; type extremals cannot extend outside the region with size of order p-adic length scale
L,. The only plausible interpretation seems to be that the information about the infrared
cutoff length scale is coded into the structure of particle: particle in the box is quite not the
same as free particle. This suggests new view about color confinement: quarks and gluons
correspond to C'P, type extremals which cannot exist too long time as free particles and
therefore cannot leave hadron.

2 Approximate construction of S-matrix

There are good hopes that the S-matrix for the C' P, type extremals representing elementary par-
ticles provides an excellent approximation for the purposes of the particle physicist. The question
whether the S-matrix in question can be interpreted as local tensor factor of the U-matrix must be
left open. One can develop rather explicit form for the Feynman rules giving S-matrix elements and
the construction of the vertex operators seems to be much simpler than in string model context.

2.1 Basic properties of C'P; type extremals

CP, type extremal has the following explicit representation

m* = f(u(s*)) mkl%% =0 . (1)
The function u(s*) is an arbitrary function of CPy coordinates and serves effectively as a time
parameter in CP, defining a slicing of C'P; to time=constant sections. The functions f* are
arbitrary apart from the restriction coming from the light likeness. When one expands the functions
f* to Fourier series with respect to the parameter u, light likeness conditions reduce to classical
Virasoro conditions L, = 0.

It is possible to write the expression for m” in a physically more transparent form by separating
the center of mass motion and by introducing p-adic length scale L, as a normalization factor.

k

%: =pfu+3, ﬁafb%p(i%’nu) +cc. . 2)

The first term corresponds to the center of mass term responsible for rectilinear motion along
geodesic line and second term corresponds to the zitterbewegung motion. p* serves as an effective
classical momentum which can be normalized as ppp* = €, ¢ = +1 or ¢ = 0. What has significance
is whether p* is time like, light like, or spacelike. Conformal invariance corresponds to the freedom
to replace u with a new ’time parameter’ f(u).

The physically most natural representation of v is as a function f(U) of the fractional volume
U for a 4-dimensional sub-manifold of C'P, spanned by the 3-surfaces X3(U = 0) and X3(U):

V(sk Sk (u
u=fU), U= V(EJP;) = SKI;(E‘P)Q) : (3)
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The range of the values for U is bounded from above: U < V,4,/V (CP2) and the value U = 1
is possible only if C'P; type extremal begins and ends as a point. U represents also Kahler action
using the value of the K&hler action for CP; as a unit.

The requirement that C' P, type extremal extends over an infinite time and spatial scale implies
the requirement

f(Umam) =00 . (4)

For f(Unmaz) < 0o CPs type extremal can exist only in a finite temporal and spatial interval for
finite values of ‘momentum ’ components p®. This suggest a precise geometric distinction between
real and virtual particles: virtual particles correspond to the functions f(Uaz) < 00 in contrast
to the incoming and outgoing particles for which one has f(Uyuq.) = 00. This hypothesis, although
it looks like an ad hoc assumption, is at least worth of studying.

The mere requirement that virtual C'P, type extremal extends over a temporal or spatial
distance of order L > L,, implies that for L < L,, the value of U is smaller than one. Kahler action,
which is given by

Sk (XY =U x Sg(CPy) , (5)

remains small for distances much smaller than L. For f(U,uq.) = oo this is even more true. This
has an important implication: below a certain length scale the exponential of the Kéahler action
associated with the internal line of a Feynman diagram does not give rise to a suppression factor
whereas above some characteristic length L and time scale there is an exponential supression of
the propagator by the factor exp(—Sk(CPz)) practically hindering the propagation over distances
larger than this length scale.

The presence of the exponential obviously introduces an effective infared cutoff: this cutoff
is prediction of the fundamental theory rather than adhoc input as in quantum field theories.
Of course, infrared cutoff results also from the condition f(Upqez) < oco. Physically the infrared
cutoff results from the topological condensation of the C'P, type extremals to larger space-time
sheets. These could correspond to massless extremals (MEs). p-Adic length scale Ly, is an excellent
candidate for the cutoff length scale in the directions transversal to ME.

The supression factor coming from the exponent of the Kahler action implies a distance de-
pendent renormalization of the propagators. In the long length scale limit the suppression factor
approaches to a constant value

Vmax
exrp —WSK(CPQ) ,

and can be absorbed to the coupling constant so that the dependence on the maximal length of
the internal lines can be interpreted as an effective coupling constant evolution. For instance, the
smallness of the gravitational constant could be understood as follows. Since gravitons propagate
over macroscopic distances, the virtual C P, type extremals develops a full Kéhler action and there
is huge supression factor reducing the value of the gravitational coupling to its observed value:
at short length scales the values of the gravitational coupling approaches to Gspore = Lf) which
means strong gravitation for momentum transfers Q> > 1/ Lf,. The values of V4, and thus those
of the suppression factor can vary: only at the limit when C' P, extremal has point like contact with
the lines it joins together, one has V0, = V(CP2). If the boundary component characterizing
elementary particle family belongs to C'P, type extremal (it could be associated with a larger
space-time sheet), C'P, type extremal contains a hole: also this reduces the maximal volume of
the C P, extremal.
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2.2 Quantized zitterbewegung and Super Virasoro algebra

Calculating various Fourier components of right left hand side of the light likeness condition
mppFp! = 0 for p* = dm”/du explicitly using the general expansion for m”* separating center
of mass motion from zitterbeweegung, one obtains classical Virasoro conditions

pg = LO B
L,|phys) = 0, . (6)

where L,, are defined by by their classical expressions as bilinears of the Fourier coefficients.
Therefore interior degrees of freedom give Virasoro algebra and zitterbewegung is more or less
equivalent with the classical string dynamics.

It is not however not obvious whether a quantization of this dynamics is needed. If quantization
is needed (perhaps to formulate the unitarity conditions in zero modes properly), it corresponds
to the construction of the bosonic wave functionals in zero modes defined by the zitterbewegung
degrees of freedom. Quantization could be carried out in the same manner as in string models.

The simplest assumption motivated by the Euclidian metric of C'P; type extremal is that the
commutator of p¥ and m” is proportional to a delta function as in ordinary quantization. One can
Fourier expand m* and p;, in the form

1 1 1
mF = mk 4 pks = 3 Eaﬁﬁexp(mf(s) +)° Eafle:vp(—mKs) :

Pk pE i Z albTexp(inKs) —i Z afexp(—inKs) . (7)

Here cm motion has been extracted and the formula is identical with the formula expressing the
motion for a fixed point of string. The parameter K is Kac Moody central charge. Note that the
exponents exp(iKns) exist provided that Ks is p-adically of order O(p) or, if algebraic extension
by introducing /p is allowed, of order O(,/p).

The commutator of p; and m? is of the standard form if the oscillator operators obey Kac-
Moody algebra

|:pi,07mg):| = sz )
Comm(a;rymﬂfl) = Km .6(m,n)m, (8)

Here K appeas Kac-Moody central charge, which must be integer in the real context at least.
Expressing the light likeness condition as quantum condition, one obtains an infinite series of
conditions, which give the quantum counterparts of the Virasoro conditions

p(2) = kLO )
Lylphys) = 0, n<0 . (9)

k is some proportionality constant. One can solve these conditions by going to the transverse gauge
in which physical states are created by oscillator operators orthogonal to an arbitrarily chosen light
like vector. What quantization means physically is that zitterbewegung amplitudes are constrained
by a Gaussian vacuum functional. A good guess motivated by the p-adic considerations is that the
width of the ground state Gaussian is given by a p-adic length scale L,: this is achieved if m* is
replaced with m* /L, in the general expression for m”*(u). The experience with string models would
suggests that vacuum functionals might be crucial for the understanding of graviton emission.
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2.3 Feynman diagrams with lines thickened to C'P, type extremals

CP, type extremals are just what the on-mass-shell and off-mass shell particles of string models
are expected to be.

1. The variation of the modified Dirac operator with respect to the imbedding space coordi-
nates implies Euler-Lagrange equations for the Kéhler action and this in turn implies that
massless Dirac equation is satisfied. Quaternion- analyticity allows to write the solutions
of the modified Dirac equation explicitly and the requirement that the supercharges asso-
ciated with M?* x SO(3,1) x SU(3) x U(2)ew generate super-Kac-Moody algebra, fixes the
anti-commutation relations of the fermionic super charges which come in two varieties corre-
sponding to the supercharges associated with the conserved fermion numbers and isometry
charges. The super-Kac-Moody algebra in question gives rise to the physical states satisfy-
ing Super Virasoro conditions. Mass squared is quantized for the representations of Super
Virasoro. There is degeneracy caused by the cm degrees of freedom forcing to introduce
plane waves and color partial waves. Note that the degeneracy in C' P, degrees of freedom is
present because C' P, type extremal is not the entire C'P,. Genus-generation correspondence
requires the presence of 3-dimensional boundary either inside C'P, type extremal or on the
space-time sheet at which C' P, type extremal is condensed at.

2. Kéhler action results as a c-number term from the normal ordering of the modified Dirac
action and appears in the exponent of the modified Dirac action definining the vacuum
functional of the theory. The exponent of the Kéahler action for a piece of C'P; type extremal
defined by the line of the Feynman diagram appears as a factor in each internal line of the
Feynman diagram.

3. For CP; type extremals the spectrum of the conserved momenta is continuous. The reason
is that the random motion with light velocity can be regarded as a superposition of classical
random zitterbegung motion and an average motion along time or spacelike geodesic line.
This means that mass squared operator associated with the C'P, type extremal is continuous
and C'P, type extremals can represent virtual particles appearing in the internal lines of
Feynman diagrams.

4. The condition that the orbit is light like random curve reduces to classical Virasoro conditions
and the mass squared of the particle corresponds classical to the 'momentum ’ squared
associated with the zitterbewegung motion.

2.4 Feynman rules

The heuristic view about Feynman rules (there are certainly delicacies involved not taken into
account in this simplistic discussion) is following.

1. There is a sum over all possible Feynman graphs with C'P; type extremals appearing as lines.
This means integration over the positions of the vertices characterized by points of Mi X C' Py
corresponding to cm degrees of freedom. One must assign to each external particle a plane
wave in Mfi degrees of freedom and color partial wave in C'P, center of mass degrees of
freedom.

2. To each 3-vertex of the Feynman graph one assigns a Glebsch-Gordan coefficient V' (a, b, ¢)
for the tensor product of the incoming super-Kac-Moody representations besides the factor
taking care of the conservation of quantum numbers, in particular four-momentum and color
and electro-weak quantum numbers.
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The lines of the Feynman diagram contain two factors: the exponent of Kéhler action and
translation operator along line.

1. The time development operator of wave mechanics is replaced with the unitary translation
operator along the line connecting the two vertices P; and P,. Translation operator is ex-
pressible as the exponent of the conserved four-momentum associated with the modified Dirac
operator. The momentum operator is in the direction of the propagator line automatically.
By using an eigen state basis of four-momenta, translation operator along the line connecting
P, and P> can be expressed as

U(Py, Py) = exp(iPyAmF) | AmF =mbk —mb . (10)

Rather remarkably, the contribution of the time development operator in the dynamics triv-
ializes totally and there is no need to construct explicit representation of the momentum
generators.

2. In order to get the propagator pole correctly it is necessary to assing with the propagator
line the factor

1

I =
Lo + i€ ’

where Lg is the representation of the Virasoro generator representing scaling in the Super-
Kac-Moody algebra defined by M* x SO(3,1) x SU(3) x U(2)ew. In string models the
propagator factor follows from the Hamiltonian time development operator defined by Lg.
In present case propagator-factor should result from the vertex operators. The vertices at
the ends of the Ramond type propagator line should be proportional to 1/Gg resp. 1/ G(T).
When the internal line corresponds to N-S-representation, the vertices at the ends of the

propagator line should be proportional to the inverses of the super-generator G=1/2 resp.
GF1/2t,

3. Internal lines contain also an exponential suppression factor f(V') given by the exponent of
the Kahler function for the piece of C'P, type external defined by the line. This factor is
given by

FV) = exp(fSK(X‘L)):exp f%SK(CPQ) . (11)

X* is the four-dimensional submanifold of CP, having as its boundaries the 3-surfaces
X3(U = 0) and X3(U = V/Veop,). The latter form follows from the fact that Kihler
action density is constant for C'P» type extremals so that Kahler action is proportional to
the volume of X*. All functions U for which the internal line defines the same C' P, volume
give rise to the same Kéahler action. In accordance with the conformal invaraince, there is no
explicit dependence on the zitterbewegung orbit.

The presence of the plane wave factors implies that the integration over the vertex positions
multiplies the stringy propagator 1/(Lg + ie) with an infrared suppression factor given by
the Fourier transform of F(V) which on basis of Lorentz invariance is only a function of
invariant line length of M$ (V and invariant line-length are alternative parameters for the
internal line).
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Scattering amplitude is obviously very sensitive to this factor and since the suppression
factor determines the momentum dependence of the propagators, one can say that the laws
of physics depend on the distribution for the functions u(s*) sensitively. This distribution is
in turn constrainted by the requirement that C'Py type extremals have suffered topological
condensation on larger space-time surfaces.

2.5 Fundamental coupling constants as Glebsch-Gordan coefficients

The Glebsch-Gordan coefficients associated with the super-Kac-Moody algebra M* x SO(3,1) x
SU(3) X U(2)ew should be determined by a construction analogous to the vertex operator con-
struction encountered in string models. In present case also a dramatically simpler approximative
treatment suggests itself.

2.5.1 Vertex operator construction

The construction of the vertex operators could proceed roughly as follows.

1. If one requires that C'P, type extremals form smooth surfaces one must assume that the
vertex regions are deformed so that the vertex represents topological sum of two CPs type
extremals. This means that vertex region has higher than 1-dimensional Mi projection and
is presumably non-vacuum classically. A simple analogy is that of gluing a cylindrical tube
to another cylindrical tube smoothly. In principle there are three functions U = V/V(CP,)
involved: denote them by U;, i = 1,2,3. U, and Us are associated with the outgoing C' P,
type extremals and have value U; = 0 at the vertex.

2. Since only 3-vertices are involved one can visualize the situation as flows associated with two
incoming lines combining to single flow along the outgoing line. The C' Py ’time’ coordinate
U(s*) serves as the time parameter for the flow. One can continue the flowlines of the
incoming flows such that they intersect the outgoing 3-surface X3(U = 0, out) surface. Thus
it seems possible to divide the outgoing 3-surface X?(U = 0, out) to two parts X3 (out) and
X3 (out) such that flow lines of the flows U;, i = 1,2 from two external legs X3(U,in), i = 1,2
enter these regions.

3. This inspires the hypothesis that the fermionic quantum states associated with the two
incoming lines are constructible using the oscillator operators constructed from the fermion
fields of X3(U = 0, out) restricted to the region X3(in), i = 1,2. This would allow to express
the fermionic state at X3(U = 0, out) using the fermionic oscillator operators associated with
the outgoing line and one would obtain a superposition of various states restricted by the
conservation of basic quantum numbers.

4. Coupling constants V(a,b,c) are not genuine constants of Nature since they are parame-
terized by arbitrary functions U (s*) associated with the incoming and outgoing lines. The
dependence on these functions is expected to be very weak. This dependence is present irre-
spective of whether a complete localization occurs in zero modes or whether wave functionals
are possible in zero modes.

The general construction is clearly akin to the construction of vertex operators in string models.
For string models the fusion of incoming strings defines splitting of outgoing string to two parts
and essentially similar relationship between incoming and outgoing oscillator operators results. In
present case the situation is complicated by the fact that the fusing objects are 3-dimensional sub-
manifolds of C'P, rather than strings propagating in some higher-dimensional Minkowski space.
On the other hand, the dynamics of the basic objects is almost trivial since C'P, geometry is not
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affect at all by the warped imbedding. In any case, the vertex operator is in principle functional
of the incoming and outgoing 3-surfaces X;.

2.5.2 Simplified model for the vertices

One can construct a simplifed model giving a good idea about what for the vertex operators look
like.

1. Idealize the projection of the vertex region to a point in Mi so that the C'P, type extremals
are not deformed in any manner in the vertex region. To get a minimally non-singular surface
one must assume that the functions w; for the C P, type extremals define same 3-surface X3
at the vertex. This means that the conditions U; = constant for the incoming line and the
conditions Uy = 0 and Us = 0 for the outgoing lines define same 3-surface. This means
that the three ’time-coordinates’ U; have same 3-surface as a common time=constant slice.
What this condition means geometrically is that C'P, type extremal branches: Y-shaped
1-dimensional surface is the homological equivalent of the resulting surface. In fact, the
branching means that the situation is effectively 1-dimensional just as it is quantum field
theories. Although this surface is singular it might provide a realistic idealization for the
construction of vertices.

2. The picture suggests the possibility that, apart from creation or annhilation of fermion pairs,
the Fock state representing the incoming particle simply splits into a product of the Fock
states associated with the outgoing lines. This assumption is analogous to Zweig rule and
would trivialize the vertex construction. If this approximation is sensical, vertices would
be simply Fock space inner products between the initial state and the state created by the
product of the operators creating final final states. QFT limit suggests that the operators
creating the states are analogous to the products of quantum fields ¢ (x) at same point z, say
x = 0. This requires that operators can be constructed as products of the operators which
are sums of positive energy creation operators for fermion and negative energy annihilation
operator for antifermion. This would perhaps make it possible to have nontrivial vertices
since annihilation and creation of fermion pairs becomes possible in the vertex provided
that the annilating fermions belong to different lines: this is essentially what Zweig rule
states. For 'Zweig option’ fermionic statistics implies that same fermionic oscillator operator
cannot occur in each line. It is not clear whether the vertices for the emission of graviton
can be non-vanishing in this approximation. For photon graviton vertex the total number
of oscillator operators involved is just the minimal one to allow graviton emission. If this
picture is correct, the effective values of various coupling constants at QFT limit should be
determined by the average value of the exponential of the Kéhler action associated with the
propagator lines representing the particles.

3. Besides the conservation of various quantum numbers 'Zweig rule’ suggests the conservation
of the vacuum weight h,q.. This conservation law could be an excellent approximation quite
generally. The conservation of h,.. eliminates very large number of the vertices involving
exotic particles and gives strong constraints on the vacuum weights of the observed particles.
For instance, in the emission of neutral gauge bosons vacuum weight is conserved. This
means that Z°, photon, gluon, and graviton must correspond to particles having a vanishing
vacuum weight. Furthermore, the differences of the vacuum weights for the fermions inside
electro-weak doublets must differ by the vacuum weight of W boson.

4. One must somehow take into account the fact that the fermions inside C'P, type extremals
move in different directions. The momentum directions of the incoming state and outgoing
states are related by a rotation. This rotation corresponds to a unitary operator U;, ¢ = 2,3
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represented as an exponent of the angular momentum operator associated with the modified
Dirac action. Therefore a natural idea is to perform the transformation a — U;alU; ! for the
fermionic oscillator operators of the incoming state.

5. The requirement that the vertices involve smooth topological sum of C'P; type extremals
implies that vertex regions cannot be vacua in a finite region surrounding the vertex point.
Therefore it is not possible to have vertices which are too close to each other so that the sizes
of the loops have lower bound, which saves from ultraviolet divergences. It is quite probable
that the loop diagrams using the vertex operators obtained by allowing singular vertices give
rise to ultraviolet divergences unless one introduces the ultraviolet cutoff by hand.

2.6 How to treat the zitterbewegung degeneracy?

Since CP, type extremals are non-deterministic, the calculation of S-matrix elements involves
integration over all possible Feynman graphs with lines thickened to manifolds such that the
positions of the vertices vary freely. One can however wonder what to do with the the infinite-
dimensional degeneracy associated with the zitterbewegung.

2.6.1 Integral over zitterbewegung degrees of freedom diverges

It is easy to see that the functional integral over the zero modes without wave functional is non-
sensical being like a path integral with a vanishing action (apart the classical Virasoro constraints)
and thus horribly divergent. The constraints L, = 0 can be conveniently represented as delta
function in Fourier representation:

X = exp(iZ/\nLn) (12)

The functional integral over the real coefficients )\, indeed gives factor §(L,,) to the path integral.
These terms give rise to effectively Gaussian functional integral over the zitterbewegung degrees
of freedom. A little formal calculation demonstrates that the result is integral over A, for the
inverse for the square root of the Gaussian determinant det(}_ A,l,), where [,, denotes the matrix
determined by L,, in the Fourier basis for m* as a function of . The determinant is a homogenous
polynomial of the variables \,, so that one has Hilbert space integral of a homogenous polynomial.
Taking Hilbert space distance /> A2 as the radial variable, one can decompose the functional
integral into a product of radial integral and an integral over unit sphere. It is easy to see that the

integral over the radial variable diverges.

2.6.2 In which degrees of freedom localization can occur?

The basic question is whether a localization in zitterbewegung modes occurs in each quantum jump
or not.

1. Quaternion-conformal degrees of freedom correspond to zero modes in the sense that they
do not contribute to the configuration space metric. If the localization in quantum jump
occurs also in these zero modes in all length scales, one avoids difficult problems related to
the definition of the functional integral over zero modes. Zitterbewegung indeed corresponds
to a conformal degeneracy since light likeness conditions correspond to classical Virasoro
conditions. On the other hand, to treat unitary condition properly, and in particular, to
estimate the probability that particular zero modes appear as a final state, one must introduce
orthonormal state functional basis in zero modes.
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2. Zitterbewegung Feynman diagrams characterize the superposition of a generalized 3-surfaces
(association sequences) defined as minimal sequences of spacelike surfaces with time like sep-
arations fixing the selection of a given zitterbewegung orbit. They characterize the final state
of the quantum jump rather than being a fictive theoretical construct. C'Ps type extremals are
actually continuous association sequences of 3-surfaces and effective 4-dimensional objects.
One could assume that initial and final states have functional-integrable state functionals in
zero modes. This assumption would correspond to a weakened form for the localization in
zero modes: localization would occur only in a resolution defined by the p-adic length scale
L,.

3. The positions of the vertices do not contribute to the configuration space metric and are
thus zero modes. One must however assign wave functions to them and these wave functions
partially characterize the quantum numbers of the incoming and outgoing particles. Thus
one must partially give up the dogma of a complete localization and perhaps replace it with a
localization below the p-adic length scale L,. It must be however emphasized that cm degrees
of freedom are ’different’ in the sense that they correspond to the imbedding space isometries
rather than conformal degrees of freedom. These degrees of freedom also correspond to n =0
generators of Super-Kac-Moody algebra.

4. Perturbation expansion should have genuine objective content. In particular, the sum over
different Feynman graphs cannot correspond to a sum over discrete zero modes since in
this case nothing would forbid the restriction of the sum to a contribution coming from a
single graph. Rather, an integration over un-controllable configuration space fiber degrees
of freedom should be in question. For purely topological reasons vertex regions cannot
correspond to exact vacuum extremals of the Kéahler action. Thus the vertices contribute
to the configuration space metric and it is perhaps possible to regard the summation over
Feynman graphs as an integral over fiber degrees of freedom.

2.6.3 Two options for how spin-glass property is realized

The randomness of C'P; type extremals brings in two arbitrary functions f(U) and U = V/V(CPs).
From foregoing it is clear that there are two options for the treating this degeneracy.

1. Spin-glass property at quantum level:
For each geodesic of the Feynman diagram extending from point P; to P, in Minkowski space
along average curve which is geodesic line, one must integrate over all possible zitterbewegung
orbits with a weight factor representing wave function in zero modes.

2. Spin glass property at classical level:

Localization in zitterbewegung degrees of freedom is assumed and average over the scat-
tering rates over some probability distribution for the zitterbewegung orbits is performed.
One might hope that this distribution is determined to a reasonable degree by the exterbal
conditions such as the space-time sheet at which C' P, type extremal has suffered topological
condensation. The presence of this distribution reflects the basic fact that the physical laws
for spin glass are state dependent in the sense that there is probability distribution for the
coupling constants. Certainly the classical option is simpler mathematically and might pro-
vide excellent approximation even in case that one localization in zitterbewegung zero modes
does not occur.

Irrespective of whether one allows wave functionals in zitterbewegung zero modes or whether one
assumes complete localization in these degrees of freedom, the prediction is that there are fluctu-
ations in the values of the effective coupling constants and the functional form of the propagators
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since the exponent of the Kéhler action depends on the function v = f(U) appearing as effec-
tive time coordinate in the equation for C'P, type extremal as as well as the functional form of
U = V/V(CP,). This means that there are two arbitrary functions playing the role of hidden vari-
ables and probably not fixable by experimental conditions. This arbitrariness implies fluctuation
in the values of coupling constants of effective low energy theories.

2.6.4 Does localization in zitterbewegung zero modes really occur?

One can represent an objection against the localization in zitterbewegung zero modes. The assump-
tion motivated by the second quantization of the zitterbewebung motion is that the wavefunctionals
in zitterbewegung zero modes correspond to the states created from the ground state Gaussian
satisfying the quantum counterparts of the Virasoro conditions for zitterbewegung zero modes.
The fact that zitterbewegung degrees of freedom should represent the bosonic conformal degrees of
freedom, raises the question whether the Gaussian ground state wave functionals in zitterbewegung
modes should be identified as a part of the ground state for a super-conformal representation. This
picture would give a very close relationship with superstring models.

Even in case that the localization in the zitterbewegung zero modes does not occur, the inde-
pendence of the vacuum functional factor on the zitterbewegung modes means the separation of
the super-conformal degrees of freedom and of the vacuum functional, and one can indeed assume
effective gauge fixing to a single zitterbewegung orbit. The oscillator Gaussian defines a cutoff
in the zitterbewegung degrees of freedom and p-adic length scale emerges naturally, if it is the
scaled coordinates m* /L, which are effectively quantized in the construction of the zero mode
wave functionals.

2.6.5 Propagators are not sensitive to the choice of the zitterbewegung orbit but
depend on the choice of the function U

Both the Glebsch-Gordan coefficients appearing in vertices and the exponent of the Kéhler action
determining the supression factor associated with the internal depends only on the function U =
V/V(CPy) defining effective decomposition of C'Ps to time=constant slices. There is no dependence
on the details of the zitterbewebung orbit itself. This suggests that one could indeed regard the
choice of zitterbewegung orbit more or less as a choice of Virasoro gauge apart from the constraint
that the quantized four-momentum is in the direction of the cm motion for the zitterbewegung
orbit.

This simplifies enormously the situation since only the average over the functions U remains.
The vertex factors are expected to depend rather weakly on the functions U associated with the
incoming lines. The supresssion factor coming from the Kéhler action is however exponentially
sensitive to the choice of the function U so that propagators are sensitive functionals of U. Ob-
viously one must perform some kind of averaging over the allowed functions U. Since Fourier
transforms of the functions v = f(U) appear in propagator lines, the averaging cannot be done in
x-space.

As already found, the weight factor F(V) = exp(—Sk) must very near to unity below some
critical length scale above which Kéhler action becomes ’full’. This length scale is naturally the
p-adic length scale L,. The values of F/(V) as function of the length of the propagator line are
characterized by the function U(s¥) = V/V(CP,) associated with the propagator line and defining
decomposition of CP, to 'time’=constant slices. The couplings in vertices are determined by
Glebsch-Gordan coefficients. The dependence of F(V') on length scale L determines the momentum
dependence of the propagator on momentum transfer and implies effective infrared cutoff in length
scale of order L,. If the function u = f(U) appearing in the definition of CP, type extremal is
finite, infrared cutoff is absolute.
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2.6.6 Do even elementary particles adapt?

The experience with quantum field theory suggests that the length scale L, could be regarded
as dynamically generated infrared cutoff length scale. The most plausible origin of this length
scale is due to the topological condensation of C'P; type extremals on, say MEs, having transversal
thickness of order L,,. This naturally restricts the radii of the zitterbewegung orbits below L,. This
suggest that for physical particles C'P; type extremals are glued to MEs of thickness of order L.
This picture is in accordance with TGD based phenomenological view about what the observed
particle should be.

The infrared cutoff coded by the extremely small value of the exponent of Kahler function
above length scale L, is coded into the geometric properties of the particle rather than forced by
boundary conditions (closing the particle into a box). Thus even elementary particles are somewhat
like biological systems able to adapt to their environment. This suggests a new view about color
confinement and about the stability and coherence of the biological systems.

The previous considerations suggest that macroscopic predictions should be averaged over the
functions U with the constraints coming from the requirement that zitterbewegung orbits stay
within the space-time surfaces at which particles have suffered topological condensation. The
distribution of allowed functions is to some degree result of evolution.

This picture conforms with the idea that self-organization and evolution occur already at ele-
mentary particle level. The p-adic length scales allowed by the p-adic length scale hypothesis can
be seen as survivors in the selection induced by the dissipation caused by quantum jumps between
quantum histories. Thus the values of the effective coupling constants and thus also physical laws
would be to certain degree results of a generalized Darwinian selection.

2.7 Can one avoid infrared suppression and how the values of the cou-
pling constants are determined?

CP, type extremals of infinite duration (v = f(U) — oo at the limit U — U,,q,) can appear as
incoming and outgoing states since wave function normalization (division of the propagator factors
of external lines away) compensates the supression factors coming from the external legs of the
Feynman diagrams. In case of internal lines the situation is different. An interesting question
is whether the exponential IR supression could be mildened by some mechanism and whether
the mildened IR supression could in fact determine the values of the effective coupling constant
strengths as proportional to the supression factors associated with the propagator lines emerging
from the vertex. If virtual C P type extremals have finite length (f(U) is finite for all values of U),
there is always also absolute length scale cutoff involved with the interactions induced by them.
This cutoff could explain color confinement and imply deviations from QED at large distances.

2.7.1 Could CP, type extremals have a small volume?

CP; type extremals could have a volume which is only a small fraction of the full volume of the
entire C'P, type extremal: the exponents of Kéhler action for the virtual particles in the vertex
would thus define the values of the effective coupling constant strenghs.

1. This would be the case if generation-genus correspondence is due to the holes inside C'P» type
extremals and if C'P, type extremals have considerable volume at the moment of absorption
and emission. On the other hand, the volumes of the virtual C'P, type extremals should be
essentially the same irrespective of the genus of the hole since the couplings of the fermionic
generations to photons are in an excellent precision the same. If the hole gives rise to a large
reduction of the volume of C'P; type extremal, it is difficult to understand why the reduction
factor would not depend on the topology of the hole. The safest conclusion is that the hole
should give rise to a negligibly small reduction of volume.
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2. The simplified model for the emission of C' P, extremal assumes that the 3-surfaces associated
with the incoming and outgoing particles are identical at the vertex. Since one of these
particles is the incoming particle, it is natural to assume that these 3-surfaces are far from
point like so that a considerable reduction of the volume would automatically occur. One can
also consider the possibility that C' P, volume increases rapidly to its asymptotic value so that
the incoming surfaces at the vertices are always in the asymptotic region and have volume
near the maximal volume. This implies that the values of the effective coupling constants
are determined by the the averages volumes of the C' P, type extremals.

3. Gravitons could differ from other particles basically because the size of the gravitonic 3-
surface at the moment of emission is very small. This could be understood if the vertex for
the emission of graviton vanishes in the approximation in which vertex represents singular
manifold homologically equivalent with a 3-vertex of QFT. This is quite possible and in
accordance with the standard physical intuition that quantum field theory description of
graviton is not possible but requires genuinely higher-dimensional vertices.

2.7.2 Magnetic compensation of the Kahler action

The magnetic fields associated with the space-time sheet at which the C'Py type extremal repre-
senting the charged particle is condensed, could compensate the Kéahler action of the C'P; type
extremal. This allows to circumvent the constraint coming from the large value of the Kahler
action if one allows virtual C'P, type extremals to have f(Uq.) = 00. This mechanism might be
involved with the phase transitions of p-adic C'P, type extremals in p-adic regions of space-time
surface to matterlike real regions existing as virtual intermediate states but is not a plausible
mechanism at the level of elementary particle physics.

What is needed is weak magnetic of Z° magnetic field whose net action is positive and larger
than Kéhler action. For a CP, type extremal of duration 7" the minimum value of the magnetic
field strength must scale like B oc (L,/T)'/? so that at the limit of an infinite duration the magnetic
field strength goes to zero. Charged particles generate dipole type magnetic with a positive Kéhler
action and Coulombic electric fields fields with a negative Kéhler action. The net Kéhler action
should compensate the Kahler action of the C P, type extremal.

2.7.3 Could CP, type extremals be transformed to D < 4 extremals?

Infrared suppression could be avoided if C'P», type extremals could be transformed to D < 4
extremals for which which the number of the compactified dimensions is D = 0, 1,2 and possibly
to D = 3. Of course, also the reverse of this mechanism is needed and here lies the first strong
objection against this mechanism. Also this mechanism would relate effective coupling constants
to the average value of the volume of the virtual C'P; type extremal at the moment when the
transformation to D < 4 extremal occurs. The simplest possibility is that C' P, extremal transforms
to D < 4 extremal with the same quantum numbers. It must be emphasized that this process very
probably does not correspond to the dressing of bare particles not hadronization process of QCD
as one might first think.

The value of the coupling constant for the emission of a particle would be exponentially sensitive
to the rate of the transformation to D < 4 extremal and depends on the quantum numbers of the
particle and on the function U characterizing C'P, type extremal. Thus the coupling constant
evolution for the particles appearing in the asymptotic states would be reduced to the estimation
of this transformation rate as a function of p-adic prime. Nonperturbative effect would certainly
be in question since quantum phase transition involving the reverse of compactification is involved.

In case of gravitons this transformation should occur so slowly that C'P; type extremal could
develop full Kéhler action making the propagator extremely small and thus reducing the effective
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gravitational coupling constant from its value LIQJ to G. In case of photon this transformation
process should be so fast so that the reduction of the effective coupling of photon would not be so
drastic. Also this picture suggests strong gravitation below length scale L, which correspond to
momentum transfers larger than 1/L,,.

Of course, what ’slow’ and ’fast’ mean depends on the function u = f(U) characterizing C P,
type extremal and it could be that the transformation processes occur with same absolute rate for
both photon and graviton and graviton and photon differ from each other in the sense that for
photon the function U achieves its maximal value much more slowly than in case of graviton. This
would mean that photons would have suffered Darwinian selection by self-organization so that they
couple relatively strongly. This looks rather strange from the viewpoint of standard physics but
TGD inspired theory of consciousness forces to take very seriously the idea about evolution and
adaptation occurring already at elementary particle level.

There are however an immediate objection against this view.

1. In case of charged leptons the only possibility is the transformation to D = 3 extremals. This
works if D = 3 extremals have small Kahler action and they exist and are stable, which is
not plausible. Thus this mechanism could be at work only for massless particles like photons
and gravitons.

2. A grave counter argument against this idea is that also the reverse transformations should
occur in the interactions with charged particles and this does not seem plausible. Of course,
these transformations could still take place.

3. The transformation leading from C'P; sized objects to objects which have at least one macro-
scopic spatial dimension seems also implausible. Rather, the opposite process (say the decay
of cosmic strings to C'P, type extremals) seems more plausible on basis of reversibility argu-
ments.

2.7.4 Some implications of the infared cutoff

If the volumes of the C'P; type extremals associated with virtual massive particles are a considerable
fraction of C'P, volume, the presence of the infared cutoff coded to the properties of the C'P; type
extremal has definite consequences at the low energy limit of the theory and is thus a testable
prediction. Deviations from QED behavior above electron length scale and color confinement are
the most obvious predictions.

1. Are virtual charged lepton exchanges suppressed above Compton length scale?

The prediction of the infrared cutoff characterized by the p-adic length scale associated with
the massive particle should have testable implications at the level of QED in long length scales.

Infared suppresions could be avoided if there is some mechanism compensating the negative
Kahler action of C'P, type extremal representing virtual electron and if virtual electron can propa-
gate over arbitrarily long distances: this is however in conflict with p-adic length scale hypothesis
and even the existence of this mechanism means deviations from QED.

If infrared cutoff is present, the diagrams containing virtual charged particles are strongly
suppressed at low momentum transfers and theory becomes effectively classical in the sense that
the tree approximation allowing only diagrams without virtual charged leptons becomes much
more than a mere approximation at low momentum transfers. Creation of real pairs is possible
but virtual pairs of charged leptons appear only in a space-time volume with size maller than the
p-adic length scale L, characterizing charged lepton. Also loops containing fermions are excluded.

If this picture is correct, QED would not be a correct theory of electromagnetic interactions
of electrons above electron Compton length of electron since the suppression of the diagrams
involving propagation of electrons over distances larger than electron Compton length is not taken
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into account. Atomic and molecular physics would represent basic examples of the phase in which
fermions are effectively classical.

2. Mechanism of color confinement

The infrared cutoff coded into the structure of quarks and gluuons suggests an attractive
mechanism of color confinemement. The command to stay confined would be coded to the functions
U characterizing quarks and gluons so that these particles could not exist as free particles for time
longer than the p-adic time T}, characterizing hadrons. Emission or absorption of gluon should
occur sufficiently often to replace the old C'P, extremal with a new one so that free quark and
gluon would be extremely social creatures and could not exist with this strong interaction.

3 Does S-matrix at space-time level induce S-matrix at con-
figuration space level?

The concrete construction of S-matrix continues to be a basic challenge of quantum TGD. Quantum-
classical correspondence and the understanding of the equivalence of the generalized Feynman
diagrams with tree diagrams in terms of a geometric symmetry realized at the space-time level
encourages to think that configuration space S-matrix could be induced from space-time S-matrix.
Stating it from a different angle, micro-locality would be realized at the configuration space level in
the sense that the core element of the configuration space S-matrix would be space-time S-matrix
acting in configuration space spin degrees of freedom identifiable in terms of states created by
second quantized induced spinor fields.

7-3 duality implying effective 2-dimensionality provides quite a concrete view about how to
construct S-matrix satisfying the basic constraints. By quantum classical correspondence space-
time surface represents not only quantum states but also sequences of quantum jumps, and even
the anatomy of single quantum jump. Indeed, the gauge invariance due to the deformations of
light like 3-D CDs could be interpreted as a space-time counterpart for an infinite number of
different quantum jumps consisting of unitary process, state function reduction and preparation
and connecting given initial and final states. Quantum classical correspondence states that not only
quantum states but also quantum jump sequences and even the complex anatomy of quantum jump
must have representation at space-time level. This has far reaching implications. Single quantum
jump and thus a particular space-time S-matrix should correspond to a finite space-time region,
perhaps single space-time sheet with the maximal deterministic regions of the space-time sheet
correlating with with the anatomy of quantum jump.

Since space-time surfaces represent quantum jump sequences and quantum states are config-
uration space spinor fields in the set of these space-time surfaces, quantum states become self
referential referring to entire quantum jump sequence which led to it. This view is of considerable
help in the attempts to formulate configuration space S-matrix in terms of much more concrete
space-time S-matrix.

3.1 General ideas
It is appropriate to describe the general ideas relating to the second quantization of the induced
spinor fields before the introduction of generalized Feynman rules.

3.1.1 The new way to second quantize

What is new is that physical states correspond to the generalized eigen states of the modified
Dirac operator D [B4] satisfying D? = 0 whereas the solutions of D¥ = 0 generate super con-
formal symmetries acting as gauge symmetries. Induced spinor fields are second quantized at the

31



intersections of X3 = XN X[ and obey anti-commutation relations fixed by the super-canonical
algebra. Anti-commutation relations are posed on spinor fields associated with Xi and X% as-
sumed to have identical eigenvalue spectra.

The second quantization differs from the standard one in TGD framework since besides ordinary
positive energy fermions also negative energy fermions are possible. At the space-time level it does
not make sense to speak about energy and momentum: rather, the modes of the modified Dirac
operator are characterized by its eigen values A\ expected to have both signs. There is no deep
reason why the spectrum should be symmetric under the reflection A — —A.

This could explain matter antimatter asymmetry. Matter would correspond to positive values
of A and antimatter to negative values of A, and the dynamics would favor matter at positive energy
space-time sheets and antimatter at negative energy space-time sheets. For instance, the number of
negative eigenvalues A could be simply smaller than the number of positive eigen values at positive
energy space-time sheets. Positive energy matter and negative energy antimatter would be created
in ”big bang” from vacuum so that most of the matter and antimatter would be at different space-
time sheets. Negative energy fermions would be analogous to phase conjugate photons allowing
interpretation as negative energy photons propagating to the direction of the geometric past.

The modes having A > 0 could correspond to creation operators and those with A < 0 to
annihilation operators. The alternative option would that the oscillator operators associated with
both signs of A are creation operators for W. The situation would be analogous to a second
quantization using a vacuum with a negative energy fermion sea and positive energy anti-fermion
sea guaranteing a vanishing net vacuum energy. If the real energies are of same sign for A > 0
and A < 0 modes, both fermions and anti-fermions possess the same sign of energy at a given
space-time sheet. This option does not however allow a representation of photon state as a local
current like bilinear.

3.1.2 Generalized Feynman diagrams as generalizations of braid diagrams

The ability of simple planar diagrams to represent extremely abstract mathematical structures such
as 3-topologies, knots and braids, allowing concrete calculations is almost magic. This inspired
the idea that also the incredibly abstract configuration space geometry and dynamics could be
represented by a generalization of braid diagrams [E10, C5, E9]. Braid diagrams indeed define a
topological S-matrix by simple local rules having deep relevance to anyon physics and topological
quantum computation [E9]. This adds more weight to the view that a generalization of braid
diagrams would be much more appropriate notion than Feynman diagram in TGD framework.
The discovery of the 7-3 duality and effective 2-dimensionality realized this dream.

1. Braiding must be introduced by a flow

One can imagine of assigning two kinds of braidings with the generalized Feynman diagrams.

1. The first braiding would be associated with the X7 interpreted as an orbit of X2 and induced
by some naturally occurring flow in complex coordinates for X2. Marked points would
correspond to the points assigned with the local operators creating the state. This braiding
would allow interpretation as a flow.

2. Second braiding would be assigned to the sphere S? associated with 6 M} = S? x Ry (actually
projective sphere). One can indeed imagine that §M$ is translated continuously along the
line connecting the two vertices connected by X l3, and that the braiding is induced by the
projection of the trivial flow w;(z) = 2 at X} to S? x R, and inducing a trivial braiding
in X2 coordinates. This braiding would not have any obvious generalization to a flow and
seems thus an implausible option.
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The connection with braidings and central extensions of Kac Moody and Virasoro algebras
[17, 18] suggests that either of the braidings is non-trivial.

Consider now the situation in more detail in case 1), which seems to be the only plausible
candidate.

1. The metric 2-dimensionality of X l?’ means that one can decompose it locally into a product
X2 x R, such that that the embedding of the complex surface X? varies with the light like
coordinate t of Ry. The anti-commutation relations are two-dimensional in the sense that
the anti-commutator involves a delta function in X2 coordinates.

2. Tt is not quite obvious that the anti-commutator {¥(zy, 1), ¥(22,t2)} is the simplest possible
one and thus proportional to §(z1, z2). There could be a flow taking the points z of X2(t;)
to points wy(z) of X2(ty) such that the anti-commutator (w and 2 do not denote complex
coordinate here)

{W(wi(2)), ¥(2)}

is non-vanishing (essentially delta function). This flow could involve also a unitary time
evolution U(t) mixing components of ¥ for a given eigenvalue A. This flow or the flow
induced by it at 6Mf‘; x C'Py could define a non-trivial unitary representation U(t) of the
braid group with any n points of X? defining the initial configuration of the braid. If one
can allow also a unitary transformation U (t) of the modes ¥, along X7, the representation
of the braid group becomes non-Abelian. Both ordinary rotation and electro-weak rotation
in spinor degrees of freedom could contribute to the braiding operation.

2. Particle massivation and braiding

A strong grasp on the physics behind braiding comes from the realization that the flow induced
by the braiding could explain the decay of correlations in turn giving rise to the mass of the
parton. The individual contributions to the general mass squared eigenvalues of partons are not
fixed uniquely in the general mass formula discussed in [B4, F2]. The proposed identification of
parton masses is only the simplest possibility, and one could add to the individual parton conformal
weights contributions compensated by the super-canonical conformal weights. This might however
be a blessing rather than a curse since it suggests a manner to understand particle massivation at
the fundamental level.

1. A natural requirement is that parton masses are consistent with the poles of the S-matrix
elements. This assumption is quite general and certainly makes sense if the S-matrix elements
allow a decomposition to vertices and propagators for a tree diagram.

2. The time evolution for the quantum states of individual partons, which are always on mass
shell (that is generalized eigen states of the modified Dirac operator) is a unitary process, and
corresponds to a braiding for an N-puncture system defined by the product of N local oper-
ators creating the parton state. The basic requirement is that the flow contains information
about the presence of other partons and thus about the normal derivatives of the imbedding
space coordinates at X;’. Hence the S-matrix indeed contains information about the interior
of the space-time surface and the effective two-dimensionality is indeed only effective. The
condition that the S-matrix elements remain unchanged in conformal transformations obvi-
ously poses explicit conditions on the normal derivatives and can be regarded as conditions
stating the vanishing of the corresponding beta function.

The best candidate for the flow is as the hydrodynamic flow defined by the discontinuity
of the energy momentum tensor associated with the Kahler action at X l3 representing what
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might be regarded as a hydrodynamical shock wave. This flow is in general not integrable
in the sense that one could assign a global coordinate varying along the flow lines. By
identifying the points of X? and XJ% having the same value of the complex coordinate z,
the flow X? — X]% defines a map w : (z,y) — (u(z,y),v(z,y)) mixing the points of X2.
The inner products of the states created by the local operator ¥, (z,y) creating one-parton
state at X? with the state created by the transformed operator U, (u(z,y),v(z,y) define
correlation functions, which vanish above some length scale determining the mass of the
parton. Massivation occurs if this map fails to be a conformal transformation.

3. By quantum classical correspondence this braiding can be also regarded as a braiding for the
points of X2, which correspond to the super-canonical conformal weights just like the points
of the celestial sphere correspond to momenta. If the number of operators creating the parton
state is larger than two, the minimal number three of threads in the braid is present and the
conformal weights become ”off mass shell” conformal weights. The massivation however can
in principle occur always. In [E9, C5] the proposal was made that the bound state conformal
weights could correspond to the zeros of poly-zetas: obviously this is a very strong prediction.
Riemann Zeta would correspond to Higgs zero phase with the minimum of 2 operators with
conjugate super-canonical conformal weights creating the state.

4. The successful description of particle massivation in terms of p-adic thermodynamics for the
Virasoro generator Ly (with p? not included) of the partons encourages to think that the
change of the parton conformal weight could be understood as a generation of a thermal
conformal weight by the flow induced by an ergodic braiding flow. This interpretation would
allow to circumvent the problem created by the fact that the thermalization for mass squared
is not consistent with the Lorentz invariance.

3. What is the flow defining the braiding?

The basic condition on the braiding is that it contains information about the interior of X4 and
thus about interactions with other partons. Second constraint is that the braiding flow is trivial
for massless particles such as photon for which the space-time correlate should correspond to X}
carrying a light-like energy momentum current.

The components X™ of some tensor field with « restricted to Xl3 define the most natural
candidate for the braiding flow. The existence of the preferred light-like normal coordinate x"
constant at X} (in the case of §M{ the light like coordinates would be 2% = ¢ £ ) is essential to
achieve general coordinate invariance.

The discontinuity of the normal component T"* of the energy momentum tensor associated
with the Kéhler action is a good candidate. At light like CDs the discontinuity of 7% could be non-
vanishing if allows light like CD to carry a shock wave also in imbedding space degrees of freedom
as suggested by the super-symmetry. The discontinuity of T"% would have an interpretation as a
shock wave like hydrodynamic flow at the boundary. For massless particles the energy momentum
current would have only a longitudinal component, the braiding would be trivial and particle would
remain massless. The appearance of the energy momentum tensor in the definition of the S-matrix
conforms with the hydrodynamic character of field equations and with the fact that the theory
must be also a quantum theory of gravitation.

This guess is supported by the modified Dirac equation. By multiplying the modified Dirac
equation at X} for shock waves localized at X with the o; defined by the light like gamma matrix
along X} and doing the anti-commutations with the modified Dirac operator D, one finds

T*"D,¥ = 0 . (13)
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The equation states that W is covariantly constant along the flow lines of the flow defined by T“".
The equation can be written as

DY +0' DU = 0,
Tni
vy = Tnt . (14)

This differs from a standard flow equation for a quantity ¥ moving along field lines only by the
fact that ordinary derivatives J, are replaced by covariant derivatives D,. This means that ¥
suffers a braiding transformation in spin and electro-weak degrees of freedom. Obviously, this
equation states super-conformal invariance in the sense that it is not possible to poses the values
of W arbitrarily in entire X; but only at X2. One could regard TGD as anyonic shydrodynamics
at the space-time level. The usual dispersion characterizing Schédinger equation emerges only at
the level of imbedding space when one assigns wave equations to propagators defined by S-matrix
elements.

Since the induced spinor connection is continuous at X f’, the discontinuity for this equation
reads as

w - A[ﬁ , (15)

thus defines an adiabatic series of braiding flows.

The naive guess is that unitarity requires that the ordinary inner product for scalar functions
is preserved in the flow so that the flow defined by v’ is volume preserving. This would require
that the vector field v* = T™/kT™, which is analogous to a velocity field, has a vanishing diverge
for some choice of the function % and thus defines a symplectic flow of X2 generated by some
Hamiltonian. This would pose an additional condition to the solution of field equations at X 13

3.1.3 Minimal braiding without crossings and the number of fermion families

Elementary particle vacuum functionals vanish for genera g > 2 if X2 is hyper-elliptic: this
explains why there are only three fermion families. The assumption that X?2 corresponds to a
complex sub-manifold of the imbedding space regarded as an octonionic manifold means that the
tangent space at each point of X2 can be regarded as a complex plane and therefore allows a
conjugation operation. If this operation can be continued to a global conformal Zs symmetry,
hyper-ellipticity follows and X2 would always have g < 3. The task is to understand what ¢ < 3
condition could mean.

Suppose that X? represents forward scattering. If the preferred points of X2 behave like anyons
rather than ordinary fermions and bosons, they can suffer also non-trivial topological scattering
represented by a topological S-matrix representing unitarily the braiding suffered by the lines. In
the recent case this braiding is defined by the ribbons composed from the points with conjugate
super-canonical conformal weights.

The natural requirement is that the topology of X2 is such that it is able to represent the
braiding operation without crossing of the lines. This is always achieved by just adding a handle
along which the line goes over the other one. The question is whether the braiding operation is
possible using only g < 3 topologies. It seems that two handles are enough.

Consider a trivial braid with N lines, and imbed it on a surface of a cylinder. Any braiding
inducing a cyclic permutation of the lines can be performed by just twisting all the lines in the
same direction around the cylinder so that a permutation 12..n — k...n...n — k + 1 results. The
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braiding 12...n — 21...n is possible without crossings only if one introduces a handle connecting
the positions of 1 and 2. 2 goes to 1 along the surface of the cylinder and 1 to 2 along the handle.
The braidings leading to permutations 12...k(k + 1)..n — 12...(k + 1)k..n can be performed by
performing first the cyclic permutation 12...k(k + 1)..n — k(k + 1)....(k — 1), doing then the
braiding £ < k + 1 using the handle, and then carrying out the inverse of the original cyclic
permutation. Compactifying the cylinder to a torus by connecting its ends gives rise to a g = 2
surface.

Thus g = 2 topology is the minimal requirement for carrying arbitrary braiding. The require-
ment that the braiding is always possible implies that g = 0 and g = 1 surfaces can represent only
the braidings of N < 3-particle states whereas g = 2 surface can represent classically arbitrarily
high number of particles. One could say that 3 particle generations are enough for representational
purposes.

This argument looks attractive and leaves only braiding induced by the flow lines of the vector
potential Ax of Kahler form into consideration. This braiding does not allow a global coordinate
varying along the flow lines in the general case but this does not lead to any obvious problems.

3.1.4 Vertices do not correspond to smooth 4-surfaces

The question is whether the new conceptual framework allows to describe elegantly the most
essential element of interacting quantum field theory: the decay of a boson to a fermion pair,
which necessitates a non-linear interaction terms in quantum field theory framework and leads to
the divergence difficulties. In contrast to what one might think first, the decays and fusions of
3-D CDs described by smooth 4-surfaces do not help. These topological decays only distribute the
probability amplitude between two different CDs much like in a double slit experiment in which
photon travels through two paths.

The solution of the puzzle was based on the old vision of Feynman about final state particles as
particles moving to the direction of past in terms of space-time topology and implied by crossing
symmetry. Now negative energy states however have a concrete physical interpretation as phase
conjugate states. Pair annihilation of a boson to a fermion pair can be regarded as a process in
which boson from past and fermion pair from future meet at the 2-dimensional surface X2 at a
bosonic 3-sheet X? C X7: the two kinds of space-time sheets emerge from the two sides of 5M_‘f_.
The meeting of light like 3-D CDs entering from different sides of a 7-D CD corresponds to various
particle vertices, and must be distinguished from time reflection in which the sheets are at the
same side of the 7-D CD.

This description allowed by crossing symmetry forces naturally the branching of 2-surfaces at
vertices. Crossing symmetry however leads to an equivalent description for the decay as a branching
of bosonic 2-surface to two fermionic 2-surfaces, all possessing positive energies. Homologically the
ordinary Feynman diagram describes the process correctly and the original belief that a smooth
4-manifold describing a decay 3-surface could describe particle decay is wrong. The elimination of
non-linear interaction term requires to give up smooth manifold topology and to allow branching.
Also boson-fermion scattering should involve tangential discontinuity of the space-time surface.
The discontinuities of space-time surfaces, obviously closely related to the 3-D CDs, reflect the
discontinuity of quantum jump at space-time level.

3.1.5 The lines of generalized Feynman graph as on mass shell particles and triviality
of loops

The fundamental gauge invariance for the extremals of Kéahler action states that all generalized
Feynman diagrams defined by light like 3-D CDs are equivalent with tree diagrams. One can
ask whether this gauge invariance generalizes so that both positive and negative energy space-time
sheet are involved. If so it could be applied also the the initial state at Xl at which pair of positive
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and negative energy states with vanishing net quantum numbers is created. Any loop going to
future and returning back should give back the initial state. This would give nothing but the
unitarity of the S-matrix since the S-matrix associated with positive and negative energy space-
time sheets would be hermitian conjugates of each other. This assumption together with on mass
property of propagating fermions implies the equivalence of loop diagrams with tree diagrams.

1. One mass shell condition implies the equivalence of loop diagrams with tree diagrams

The key observation is that the eigen states of D at light like 3-D CDs representing the lines
of the generalized Feynman diagram are propagating on mass shell modes with the momentum
replaced with the eigen value A of the modified Dirac operator D. One can assign four-momenta
only to the incoming and outgoing particles: they do not appear as labels of the intermediate
states of the generalized Feynman diagram. This is due to the fact that four-momentum cannot
be assigned to a fermion at space-time sheet but to a configuration space spinor field. Indeed, M*
translational degrees of freedom are associated with the sectors of the configuration space sectors
defined by the unions of X7.

The on mass shell property suggests an amazingly simple manner to understand why loops do
not affect the Feynman diagram. Already in the ordinary quantum field theory the restriction of
virtual particles in the loop on mass shell gives nothing but SSt = 1 for the space-time S-matrix
acting in the fermionic degrees of freedom.

2. A delicate point related to the sign of ok

This raises a rather delicate point. The change of the sign of a is an attractive idea and might
be also important in guaranteing that the actions of C'P; type extremals associated with positive
and negative energy particles cancel each other. If the values of the Kahler coupling strength
are same for the two time orientations, space-time sheets and their time mirror images would be
complete copies and the time reflected evolutions of fermionic Fock states would be identical with
the original. The change of the sign of ax however means that Kahler electric (magnetic) fields
are favored for Xi (X?*) so that an asymmetry results and the states are not identical. This
would however mean the failure of the generalized form of the gauge invariance and unitarity in
the proposed form.

There are thus two options.

1. If one wants to keep the gauge invariance in the most general sense, the sign of ax must
be the same for Xi and X*. In this case genuine loops are possible and the possibility to
eliminate them would imply also unitarity condition SSt = 1 for the space-time S-matrix
associated with a particular loop.

This would also allow to resolve at quantum level the original paradox that led to the idea
about different signs of ax. At the moment of big bang corresponds to time reflection of
negative energy cosmic strings at (5Mi x C' P, to positive energy cosmic strings. The problem
was that the dissipative dynamics is expected to imply the decay of cosmic strings also at the
negative energy space-time sheets but in a reverse time direction of geometric time. How it
is possible that the cosmic string from the geometric future have been able to survive? The
change of the sign of ax would favor magnetic fields instead of electric fields and would make
cosmic strings stable final states of self-organization. The quantum solution of the paradox
is to see the situation is as creation of matter from vacuum rather than time reflection.
Whether the dissipative evolution for the extremals of Kahler action proceeds in the same
time direction at both space-time sheets must be left open. If it does then negative energy
cosmic strings are stable.

2. If the signs of ai are different, all loops that can be eliminated should preserve the character
of the space-time sheet as X i or X*. The annihilation of a boson to a virtual fermion anti-
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fermion pair could not occur at all. The only loops would correspond to smooth manifold
topologies and to a temporal flow of single fermion probability amplitude along two different
routes rather than a creation of a virtual pair which is a process occurring at Fock space
level. This option looks implausible.

3.2 Feynman rules

The Feynman rules are in a concise form following.

1. Positive/negative energy partons, identifiable as partons and their phase conjugates, reside
at future/past directed space-time sheets. Crossing symmetry allows to relate a process in
which negative energy partons appear in the initial state to a process in which they are
replaced by positive energy partons in the final state. The vacua associated with partons
and their phase conjugates relate like Dirac’s bras and kets to each other.

2. There are no propagators associated with the parton lines. They are replaced by unitarity
matrices Uy(t) acting in spin and electro-weak spin degrees of freedom representing single
particle unitary time evolution Uy with respect to the light like coordinate ¢ along X l3 con-
necting the vertices. U, defines braiding matrices in the projective sphere defined by §M%.

3. Vertices correspond to surfaces X2 C X[ at which parton surfaces branch are branched.
Vertices are vacuum expectation values for the operators creating the resulting zero energy
state.

An important difference with respect to the standard Feynman diagrams is that vacuum lines
are possible. Vacuum extremals are obviously the space-time counterpart for them and for them
all spinor degrees of freedom are pure gauge. For instance, the smooth decay of a quark 2-surface
to two can be understood as a formation of superposition of states for which either line is in a
vacuum state. In the ribbon algebra formalism based on the generalization of braid diagrams to
tree diagrams vacuum lines have identity morphism as their counterpart [C5]. Note that vacuum
extremals are not vacua with respect to gravitational energy and gravitational quantum numbers.

The cancellation of divergences can be understood from the replacement of local composite
states with many particle states of a free super-conformal fermionic field theory at 2-surfaces
X?2. The vertex functions become essentially weighted averages of N-point correlation functions
appearing in the construction of states, with N determined by the total number of fermions and
anti-fermions in the vertex.

3.2.1 Partons and particles

The basic structures are 7-D light like CDs of form X| = dM{ x CP, and 3-D light like CDs X}
representing lines of generalized Feynman diagrams. Each incoming/outgoing particle corresponds
to a 3-surface X3 C X7 containing X? as partons. Bound states result by connecting 3-surfaces
by join along boundaries bonds so that they correspond to same 7-D CD. Each incoming/outgoing
free particle corresponds to its own Xl _. The 3-D CDs connecting 7-D CDs brings in mind strings
connecting branes in M-theory. The notions of composite particle and parton emerge at the level
of the basic definitions and the theory also describes the reactions in which partons arrange to new
particles. Hadronic physics is obviously the fundamental applications for the theory. Perturbative
QCD would correspond to a restriction of the theory to single X3.

Some notation is in order. Let capital letters I, J, ... label the 7-D CDs and small letters i, 7, ...
label the 3-D CDs. One can in principle continue the eigen modes of the induced spinor field
from the partons X_Qh 1,; along the generalized Feynman diagram defined by X 13 ri C le ; to the
parton surfaces XE’ 5; € X z ;- The eigen modes continued from Xl, ; through the generalized
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Feynman diagram without encountering vertices X is traversed are in general superpositions of
eigen modes at X7 .

3.2.2 Vertices: BFF vertex as an example

The eigen values A replace four-momenta in the propagator lines. Parton lines can contain arbi-
trarily many fermions each accompanied by unitary operator U) (t) relating ¥ at the end of line to
W, at the beginning of the line. Local composites, such as photon interpreted as a local composite
of fermions and anti-fermions, are allowed since everything commutes at a given space-time sheet
and there are no normal ordering problems. The local composite property is preserved along the
line since the evolution of ¥ in the longitudinal direction is induced by a flow allowing no disper-
sion. Vertices can be regarded as having the eigen values \; associated with various incoming and
outgoing particles as labels instead of the momenta.

The equivalence of generalized Feynman diagrams with tree diagrams requires that the space-
time S-matrix is same for all space-time surfaces for which Xi 1,; are identical and for which also
3-D tangent space of X l3 1 at Xi 1,; are same. The generalized Feynman diagrams are like paths
for analytic continuation and this suggests that the notion analogous to homotopy equivalence
might be relevant. Hence a possible additional condition is that equivalent Feynman diagrams are
related by a conformal symmetry. The existence of a large number of conformal homotopy classes
could relate to the p-adic coupling constant hierarchy. On the other hand, p-adic mass calculations
support the conclusion that p-adic prime characterizes X ? rather than conformal homotopy class of
different surfaces X having X? as its its end. Also the fact that X} with different topologies should
define equivalent generalized Feynman diagrams dis-favors the notion of conformal homotopy.

It is instructive to consider BFF vertex as an example.

1. The gauge boson must correspond to a bi-local fermion-antifermion operator since for a
local operator the norm would be infinite. The bi-local operator involves a kind of structure
function in X2 x X? allowing visualization as a line connecting two points z and y having
fermion and anti-fermion at its ends. The bi-local current would be sum of two terms

B o= [ aVa%Bey [Fereve) + T@rew] . o)
X2x X2

Here T' involves various vertex operators acting on spinor fields such as a contraction of
a polarization vector with gamma matrices in case of spin one bosons, and M* derivative
operators/color isometry generators in case of graviton/gluon. The vacuum expectation
value determining the vertex would boil down to a correlation function defined as integral
over X2 x X2 and bilinear of functions formed from positive energy fermion and anti-fermion.
B(x,y) is determined by the super conformal invariance essentially as a correlation function
[F2].

2. The vertex involves a vacuum expectation value for the product of operators creating boson
and fermion and anti-fermion. The definitions of fermionic operators involve an integral over
X?2. Fermionic anti-commutators boil down to delta functions so that a two-point weighted
average over X2 x X2 of the correlation function with kinematical factors at the ends ends
is the outcome.

Conformal theory alone gives no hint about how the coupling constant appears, and configu-
ration space-integral is necessary to understand the emergence of the gauge coupling.
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1. A strong hint comes from the facts that all coupling constants, except possibly gravitational
constant, must be proportional to Kahler coupling gx. The most natural manner to achieve
this is to require that the bosonic configuration space spinor fields vanish at the maximum
of the Ké&hler function where the perturbation series is developed. That bosons should cor-
respond to small perturbations around the maximum of the Kéhler function is in accordance
with the assumption that quantum fields correspond to the perturbations around the extrema
of the action functional. This means that one can write B(z,y) in the form

B(z,y) = OrKB'(z,y) ,
OrK(X?) = 0 at the maximum of K . (17)

Gere J; K denotes partial derivatives of Kéhler function with respect to the configuration
space coordinates X' vanishing at the maximum of K.

2. The functional integral in the lowest order approximation is obtained by expanding B(x,y)
in lowest order to functional Taylor series in using the coordinates X7’

B(z,y) = OrK x B'(x,y) x XT | (18)

It is understood that also B!(x,y) allows functional power series expansion as a functional
of X3. In the lowest order approximation the norm N of the boson state is given by the
functional integral

N = (/ B(z,y)B(z,y)dV,dV,) = A1y x B!
X2xY?2
A[J = 8]6RK>< 6J85K X <XRXS> s
B = / B (x,y) B (z,y)dV,dV, . (19)
X2xY?2

Here (XEX9) is a two point function defined by the functional integral over small per-
turbations around the maximum of Kéahler function Specifying the coordinates to complex
coordinates and using the covariant Kahler metric G .7 = 907K as the kinetic term. Since
the contravariant Kéhler metric defines the propagator, the lowest order approximation gives

N = GgpxBXE . (20)

What is nice that the symmetry considerations allow to determine the covariant metric highly
uniquely and the propagator disappears from the final formula. The normalization factor
1/ VN of the boson state is obviously proportional to gx since the Kéhler function K is
proportional to 1/ak.

3. Fermion boson vertex is indeed proportional to gx. B(x,y) must be expanded in a functional
Taylor series up to a second order term

B(z,y) = OrKB(z,y)X® +0rK x 0B (z,y) x XTX5 ... . (21)
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The general expression of the BFF vertex is

1 _
Vs = —— B(x,y)IdV,dV,) =
BFF ﬁN< ey (z,y) )

A = / 0/B' (z,y)TdV,dV, . (22)
X2xY?2

A

3

The propagator compensates the second order derivatives of Kahler function in the functional
integral average, and the vertex is indeed proportional to g .

3.2.3 How to deduce the exponent of Kéhler function?

The exponent of Kéahler function appears in the Feynman diagrams. If the exponent for the
difference of Kéhler actions at neighboring maximal deterministic space-time regions, call them R,,,
equals to the ratio of Dirac determinants for the modified Dirac operator in the region separating
these regions then it is possible to deduce the value of Kéhler function assuming that there is a
maximal deterministic region, say R,,, in which Kéhler action vanishes. Of course, one can also
take the attitude that the Dirac determinants are the fundamental quantities and just hope that
their ratios are expressible using the exponents of Kahler action.

Consider arbitrarily region R,, and construct a path R,, R,,...Rn, Ry, leading from R,, to

Ry. Form the product E,, = Dy, n, Dgglm Dn3n4....D,(1;172: ™ of Dirac determinants. This product
gives the exponent of Kéahler action in R,,. The same procedure applies to any region inside
connected space-time region. By multiplying the resulting exponents E,,, , one obtains the value
of the exponent of the Kéahler function.

Dirac determinant D,,, is for the determinant bundle what curvature form is for ordinary
bundle and therefore one might expect that it contains all the physics. Hence it is quite possible
that there is some kind of gauge principle which might simplify the situation: for instance, the
normalization of the configuration space spinor fields might imply that Dirac determinants are all
that is needed and that there is no need for the proposed construction.

A second problem is computation of the configuration space propagator as the inverse of the
Kaéahler metric. This should be possible from the expression of the Kéhler metric deduced from
super-canonical invariance.

3.2.4 How to understand gauge coupling evolution?

The proportionality of gauge couplings to gx fixes the bulk part of the dependence of the coupling
constants on the length scale and phase resolution characterized by the p-adic length scale and
Beraha numbers B,, determining the value of fi(n). Quite generally, the general coupling constant
evolution would trace a path in the 2-dimensional discrete space with points (p,n) determined by
p-adic length scales and Beraha numbers B,, = 4cos?(7/n), n > 3 directly related to the algebraic
extensions of p-adic numbers.

The length scale evolution of Kahler coupling strength is typical U(1) evolution and cannot
explain the different length scale evolutions of electro-magnetic, weak, and color coupling strengths.
The value of K&hler coupling strength for L(k = 2) which corresponds to C' P, length scale is
ax =~ .04 as predicted from its value at L(k = 127) very near to fine structure constant o ~ 1/137.
Color coupling strength according to QCD decreases as high energies and the increase of fine
structure constant is slower (1/a ~ 128 and 1/ax ~ 101 at intermediate boson length scale
L(89)).

The different dependence of the n-point functions on p-adic length scale should explain the
different dependence on length scale. The typical size of the surfaces X? determined by the p-adic

41



length scale is expected to affect the coupling constant evolution and the effects would depend on
the detailed structure of the particles involved. By quantum criticality the beta functions of the
conformal field theory associated with X2 vanish but the dependence of the fixed point values of
the coupling constants of the super-conformal field theory on p-adic length scale would affect the
length scale dependence. What should be done is to try to understand how the spectrum of the
critical values of coupling constants emerges in conformal field theory framework.

The hypothesis that the perturbative character is preserved would force the increase of % to
compensate for the increase of color coupling strength. The maximal reduction would be by factor
1/2 in the range n > 4. At the last step a transition to n = 3 confining phase with universal
properties would occur [D6]. An interesting possibility suggested by TGD based view about
coupling constant evolution is that there is entire hierarchy of QCDs which are not asymptotically
free which would mean that coupling constant would start to increase above and below certain
critical p-adic length scales. The hypothesis that perturbative character is preserved by the increase
of h would lead to a decrease of i and the last means of achieving this would be transition to n = 3
confining phase with universal properties.

3.3 S-matrix

The first guess is that configuration space S-matrix is induced from space-time S-matrix so that
only convolution to construct the full S-matrix. This picture is over-simplification but also in a
more general case similar factorization of the dynamics in ”orbital” and ”spin” degrees of freedom
occurs.

3.3.1 Space-time S-matrix

S-matrix at the space-time level is obtained by constructing the amplitudes using propagators and
vertices defined in the proposed manner at surfaces X2 at which positive and negative energy
space-time sheets coming from different sides of 7-D CDs meet.

The equivalence of generalized Feynman diagrams with tree diagrams suggests the existence of
a hierarchy of unitary S-matrices. Indeed, loops starting from Xfr and ending up to a fixed X7
and returning back to Xl would give rise to a unitary sub-S-matrix when the fermionic states
at both ends are allowed to vary. In fact, all continuations of configuration space spinor fields
between different sectors of the configuration space give rise to S-matrices so that the family of S-
matrices is labelled by the initial and final sectors. Also the hierarchy of space-time sheets labelled
by p-adic length scales would reflect itself as a hierarchy of S-matrices. The existence of these
hierarchies would fit nicely with the thinking of practicing experimental physicist. Space-time S-
matrix corresponds to S-matrix at single point of the configuration space restricted to configuration
space spin degrees of freedom.

3.3.2 Configuration space S-matrix

The simplest guess is that configuration space S-matrix S could be constructed by taking matrix
elements of the space-time S-matrix in fermionic degrees of freedom regarded as a functional in the
space of 3-surfaces between purely bosonic state functionals Q(X?) defined in the configuration
space.

Let Q;(X3) define a complete set of configuration space spinor fields. Define the elements of
S-matrix S as

Srigj = /QI(XB)SM(XS)QJ(XB)DV~ (23)
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The unitarity condition for S would reduce to the completeness of the basis Q;(X?3) and unitary
of the space-time S-matrix. Here X3 refers to the 3-surface characterized by the the intersections
of X* with Xj_ or X7. dV denotes the integration measure for configuration space.

One can argue that the absence of the dispersion is only an approximation. One can indeed
generalize the ansatz to by replacing the S-matrix with S(X3,Y3);; = So(X3,Y3)S,;(Y3). Here
So(X3,Y3) would satisfy unitarity condition with X? and Y3 playing the role of matrix index. Note
however that here i and j refer to spinors in X3 and Y. Quantum classical correspondence allows
to argue that the non-determinism of the Kahler action always implies the existence of a space-time
surface for which X3 and Y correspond to 3-surfaces resulting as intersections of X* with XI_
and X7 so that the generalization would not actually bring in anything new. Stated in a different
manner, the path of the configuration space connecting X3 to Y2 would have a representation as a
space-time surface. This would also make obvious why all generalized Feynman graphs with same
initial and final stats are equivalent.

Configuration space integration gives rise to Feynman graphics using ax as a coupling con-
stant but by the non-locality of the K&hler function as a functional of 3-surface does not involve
infinities. An interesting question is whether loops vanish at this level too. The decomposition of
the configuration space to a union of symmetric spaces indeed suggests that a generalization of
Duistermaat-Heckman theorem [16] from the finite-dimensional case holds true and implies that
the integration effectively reduces to a Gaussian integral around unique maximum of Kahler func-
tion for given values of zero modes and that the matrix elements of configuration space spinor
fields in irreducible representations of the super-canonical algebra are determined by symmetry
considerations.

3.4 Some intriguing resemblances with M-theory

There are some intriguing resemblances with M-theory, which need not be purely accidental.

1. Since configuration space geometry can be coded in terms of the surfaces X2 and 344 dimen-
sional CDs, TGD can be said to almost reduce to a membrane theory with 344 dimensional
CDs taking a role analogous to that of like light like 6-branes connected by light like 2-branes.
M-theory would correspond to a situation in which 2-branes connect the outer boundaries
of the 6-branes and also this kind of situation might be realized in TGD framework and
could provide a representation of dynamics in terms of quantum states (light-like surfaces
would make possible time-like—space-like duality). Of course, the physical interpretations of
TGD and M-theory are totally different, and these resemblances force to think that although
the physical interpretation of M-theory is badly misguided the theory contains at least some
correct mathematical pieces.

2. Witten [19] has shown that the maximally helicity violating n-gluon amplitudes of N = 4
super symmetric Yang Mills theory, which are holomorphic functions of a twistor variable,
allow an expression as integrals over 2-dimensional surfaces of 6-real-dimensional twistor
space C'P;, which can be given a structure of a Calabi-Yau manifold. TGD allows N = 4
complex local super symmetry in leptonic and quark sectors. dM% x CPy is metrically 6-
dimensional but not Calabi-Yau space, which might be interpreted in terms of the breaking
of N = 1 global super-symmetry, which has turned out to be a more like a curse than blessing
in M-theory.

One ends up with the twistor space C'Ps from 5Mfi interpreted as a representation of massless
four-momenta p by the following procedure. Assign to p, p> = 0 a pair of row and column
spinors A and ), whose tensor product A®\ defines 2 x 2 SL(2,C) matrix o-p with determinant
equal to p> = 0. X and X\ are defined only modulo projective transformation ANA) —
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(uX, A/u). A possible choice is A = +X, where the sign factor defines the sign of energy. The
assignment p — )\ is not a function and the assignment corresponds to Hopf bundle §% — S2.

A polarization vector € orthogonal to p can be represented as a tensor product of a two-
component spinor g and A. Thus one has a pair (u, A) of 2-spinors defined modulo a pro-
jective scaling, and this gives rise a twistor defining an element of C'P;. 10-dimensionality
of CP; x CP, brings in mind super string models. It must be however made clear that
twistor description is rather limited even in its super-symmetric form and does not seem to
be plausible in TGD framework.

4 Construction of U-matrix in ’stringy’ approach

Perturbative approach to the construction of U-matrix relies on the assumption that U-matrix
follows from Super Virasoro invariance alone and that the condition Lg(tot)¥ = 0, where Lg(tot)
is Virasoro generator for interacting space-time surface, must determine U-matrix. In the following
it will be found that one indeed ends up with a general expression of stringy U-matrix using the
following ingredients.

1. Poincare and Diff* invariances.

2. Decomposition of the Virasoro generator Lg(tot) of X4(U; X3?) to a sum of free’ Super Vira-
soro generators Lg(n) for various asymptotic 3-surfaces X3(a — oo) plus interaction terms.
"Free’ Super Virasoro generators are defined by regarding these 3-surfaces as independent
universes characterized by their own absolute minima X*(X3) of Kéhler action.

3. Representation of the solutions of the Virasoro condition Lg(tot)¥ = 0 in a form analogous
to the scattering solution of Schrodinger equation.

Contrary to earlier expectations, it seems that one cannot assign explicit Schrédinger equation
with the U-matrix although the general structure of the solutions of the Virasoro condition is same
as that of scattering solutions of Schrodinger equation in time dependent perturbation theory and
U-matrix is completely analogous to that obtained as time evolution operator U(—t,t), t — oo in
the perturbation theory for Schrédinger equation.

4.1 Poincare and Diff* invariance

Virasoro generators contain mass squared operator. Poincare invariance of the U-matrix requires
that one must use Diff* invariant momentum generators pi(a — o0) in the definition the Super
Virasoro generators and of U-matrix. At the limit a — oo the generators of Diff* invariant
Poincare algebra py(a) should obey standard commutation relations. One can even assume that
states have well defined Poincare quantum numbers and Poincare invariance becomes exact if one
can assume that the states are eigen states of four-momentum. Therefore very close connection
with ordinary quantum field theory results.

4.2 Decomposition of L to free and interacting parts

At the limit a — oo 3-surfaces X3(n) associated with particles can be assumed to behave in
good approximation like their own independent universes. This means that one can assign to each
particle like 3-surface X3 its own Dif f* invariant generators py(n,a — 00), whose action is defined
by regarding X?(a — oo) as its own independent universe so that Diff* invariant translations act
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on the absolute minimum space-time surface X*(X?) associated with X2 rather than X?4(X?)
associated with the entire universe X3.

This means effective decomposition of the configuration space to a Cartesian product of single
particle configuration spaces and the gamma matrices associated with various sectors, in particular
those associated with center of mass degrees of freedom, are assummed to anti-commute. It is as-
sumed that each sector corresponds to either Ramond or NS type representation of Super Virasoro.
The Virasoro generator Lg(tot) for for entire Universe contains sum of Virasoro generators Lo(n)
for X3 plus necessary interaction terms. The Super Virasoro representation of entire universe in
turn factors into a tensor product of these single particle Super Virasoro representations. Quite
generally, Super Virasoro generators for the entire universe can be expressed as sums of the Super
Virasoro generators associated with various 3-surface X3 plus interaction terms.

4.3 Analogy with time dependent perturbation theory for Schrodinger
equation

Time dependent perturbation theory for ordinary Schrodinger equation is constructed by using
energy eigen states as state basis and the basic equation is formal scattering solution of the
Schrodinger equation

v
v = \IIO+E_HO+Z-€\I]' (24)
Here € is infinitesimally small quantity. ¥, (U) is eigen state of Hy (H) with eigen energy E. With
these assumptions Schrodinger equation is indeed satisfied and one can construct ¥ perturbatively
by developing right hand side to a geometric series in powers of the interaction potential V. This
expansion defines the perturbative expansion of U-matrix, when perturbative solution is normalized
appropriately.

Since ordinary Schrédinger equation is consistent with the scattering matrix formalism avoiding
elegantly the difficulties with the definition of the limit U(—t,t), ¢ — oo, it is natural to take this
form of Schrodinger equation as starting point when trying to construct explicit form of the ’time’
evolution operator U. One can even forget the assumption about time evolution and require only
that the basic algebraic information guaranteing unitarity is preserved. This information boils
down to the Hermiticity of free and interacting Hamiltonians and to the assumption that the
spectra non-bound states for free and interacting Hamiltonians are identical.

4.4 Scattering solutions of Super Virasoro conditions

One ends up with stringy perturbation theory by decomposing Lq(tot) to a sum of free parts and
interaction term. In this basis Super Virasoro condition can be expressed as

Lo(tot)m) = [Lo(free) + Lo(int)]|m) =0 . (25)
Various terms in this condition are defined in the following manner:
Lo(free) = ZLO(n) = Z [p*(n) — Lo(vib,n)] = P* — Lo(vib) ,
n n
P2=0>, p%*(n) ; Lo(vib) =3, Lo(vib,n) ;

Lo(n) = p*(n) — Lo(vib,n) .
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Note that the mass squared operator p?(n) act nontrivially only in the tensor factor of state space
associated with X3.
One can write the general scattering solution to this equation as

= ) ey + ie

Im) . (27)
€ is infinitesimal parameter defining precisely the momentum space-time integrations in presence
of propagator poles. Ly(int) is defined uniquely by the decomposition of the Ly associated with
the entire universe to a sum of Lg(n):s associated with individual 3-surfaces X3 regarded as
independent sub-universes plus interaction term.

|mo) is assumed to satisfy the Virasoro conditions of the ’free theory’ stating that all particles
are on mass shell particles:

Lo(n)lme) = [pz(n) — Lo(vib, n)} |mo) =0 . (28)

These conditions are satisfied if W belongs is expressible as tensor product of solutions of Super
Virasoro conditions for various sectors X?. W, runs over the entire solution spectrum of ’free’
Super Virasoro conditions.

The momentum operators py(n) are generators of py(n,a — oo) Diff* invariant translations
acting on the 3-surface X3(a — oo) associated with particle n regarding it as its own indepen-
dent universe. The perturbative solution of the equation is obtained by iteration and leads to
stringy perturbation theory with Lo(n) appearing in the role of propagators and Lg(int) defining
interaction vertices. These conditions define Poincare invariant momentum conserving U-matrix
if Loy(int) defines momentum conserving vertices. This should be the case at the limit a — oo.

An explicit expression for the scattering solution is as geometric series

1

lm) = m\m0>»
1

(m| = <m0|mv
X = Lo(int

To e otint)
Xt = Lo(int 29

olint) (29)

4.5 7Proof”’ of unitarity using a modification of formal scattering theory

The solution of the Virasoro condition for Ly has same general structure as the scattering solution
of Schrodinger equation. The action of “time development” operator U means the replacement
of the superposition of the solutions of “free” Super Virasoro conditions with a superposition of
the corresponding normalized scattering solutions of the full super Virasoro conditions. It does
not seem however useful to assign explicit Schrédinger equation with Super Virasoro conditions.
It is not clear whether this is even possible. One can however modify formal scattering theory to
”prove” the unitarity of U-matrix.

1. One has the basic equation

m) = Jmo) ¢ !

mLo(intﬂm) . (30)
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2. One can multiply this equation by Lo(free) + ie and move the terms of type ...|m) to the
left hand side to get (Lg(tot) +i€)|m). Right hand side gives (Lo(free) + Lo(int) +i€)|mg) —
Lo(int)|mo) by adding and subtracting Lg(int)|mg). Solving |m) one obtains

1 .
lm) = |m0>—mLo(mtﬂmo> . (31)

3. One can also solve |myg) from the first equation

1

el = I e 0

Lo(int)|m) . (32)

Consider now the matrix element {m|n): one must show that this is (mg|ng) in order to prove
unitarity.

1. Expressing (m| in terms of (myg| using equation 31 gives

1
Lo (tOt) — i€

(mln) = (moln) — (mo|Lo(int) n) -

2. One can use the fact that Lo(tot) annihilates |n) to remove 1/(Lg(tot) + i€) term in front
of Lo(int) and write the resulting 1/ie as 1/(Lo(free) + ie) using the fact that Lo(free)
annihilates (mg|. This gives

1

To(free) + e olntnd = {molno)

(mln) = (moln) + (mo|

where equation 32 is used. Thus one has (m|n) = (mg|no) and unitarity holds true formally.

The basic counter argument against this ”proof” is that scattering states contain of mass shell
contributions so that the space of "free states” is subspace of scattering states. If scattering
states form a complete orthonormal set, unitarity conditions become ) Syn Sy, = Pnr, where
P denotes projection operator to the space of ”free” states. Thus probability conservation is not
achieved.

4.6 Formulation of inner product using residy calculus

It is not clear how the dirty looking formulas for the scattering states containing e — 0 can give rise
to a finite U-matrix: the relevant part of the inner product is proportional to 1/ie. One gets rid
of this difficulty by using a proper representation for the projection operator. The represention is
obtained by replacing the states |n(e)) with states |n(z)), where € is replaced with complex number
z.

In(z)) = Ino) + Lo(frele)Jriz - 1+§((z)|”0> ’
X() = gt |
X'(z2) = Lo(int) — (33)
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Projection operator can be written in two forms

1 1
o= g e = fd)
R S
P o= o b e = 0O

o 1
pz) = 27 Lo(free) +iz
pE) = (34)

27 Lo(free) — iz

C' is very small curve surrounding origin containing no other poles than states annihilated by L.
By acting on arbitrary state decomposed to eigen states of Lg one finds that the integration picks
up only the states annihilated by Lo(free).

The inner product for scattering states reads as

mmm:=ﬁmﬁﬁwwwmwwm. (35)

In this manner the dirty limiting procedure for defining states and their inner products is replaced
with elegant formalism based on residy calculus and formulation becomes mathematically more
rigorous.

4.7 Unitarity conditions

U-matrix is defined between the projections P|n) of scattering states to "free” states satisfying
free Virasoro conditions. Therefore the Hilbert spaces of ”free” and projected scattering states
are at least formally identical. This means that off-mass-shell states appear only as intermediate
states in the perturbative expansion of the U-matrix just as they do in the standard quantum field
theory.

U-matrix is unitary if outgoing states are orthogonal to each other. This follows from the
definition of U-matrix as

Sn m = <m0|n> 3

)

(36)

where my is incoming state and n is scattering state normalized to unity. Unitary condition reads
as

> Smr(Sns)* = d(n,m) . (37)

where summation is over the ”free” states |rg) to which quantum jump occurs.
Unitarity condition reads explicitly as

Zsm,r(sn,r)* = Z<n|ro><ro|m>=<n|m>. (38)

T
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Here the completeness of the ”free” state basis has been used. Hence unitarity holds true if one
has

(m|n) o< §(m,n) . (39)

provided that the normalization constant for the outgoing states are finite. In quantum field
theories this is not usually the case and this could be the reason for why p-adics are necessarily
needed.

In case of Schrédinger equation one can prove orthogonality of the scattering states by noticing
that "free” and scattering state basis are related by a unitary time development operator, which
preserves the orthonormality of the incoming states. Now the situation is different. The combina-
torial structure is same as in wave mechanics but genuine time development operator need not exist
and one must resort to the hermiticity of Lo(free) and Lo(int) plus the general algebraic structure
of the scattering states plus possible additional assumption in order to prove the unitarity.

Using geometric series expansions and the expression of the inner product based on residy
calculus one can write unitarity conditions as

$odz ., d2<m0|pr+f(g)p(5)p(z)u+(2)|no> = G(m,n) ,

G(m,n) =< m|P|m)d(m,n) ,
(40)
X(Z) = mLo(Znt) s

X1(2) = Lgreg—zLo(int)
G is the matrix formed by the wave function renormalization constants. Note that in these con-
ditions outgoing states are defined as on mass shell projections of the scattering states just as in
quantum field theory. In the formal scattering theory this projection is not included. The neces-
sary presence of projection operators suggests strongly that the formal proof of unitarity fails and
that additional condition guaranteing unitarity is needed.

4.8 A condition guaranteing unitarity

The naive expectation supported by the formal proof is that the unitarity of the U-matrix fol-
lows automatically if free and interacting Virasoro generators Ly can be regarded as Hermitian
operators. The fact that time development operator need not exist might somehow make unitarity
impossible without additional conditions. In fact, unitarity is by no means obvious even in standard
scattering theory. Potential difficulties are also caused by the fact that normalization constants
can diverge: this is indeed what they typically do in quantum field field theories. There is also
the problem caused by the fact that the state bases formed by ”free” and scattering states are not
identical: this is obvious from the fact that scattering states contain off mass-shell contributions
coming from particles, which do not satisfy the free Virasoro conditions Lg(n) = 0. Therefore
it is of considerable interest to see whether some additional constraint could guarantee unitarity
and perhaps provide a precise mathematical realization for quantum criticality and perhaps even
explain why the p-adicization of U-matrix is necessary.

Experimentation with various possibilities guided by critical comments of Hitoshi Kitada (he
pointed out the possibility of complex formalism and demonstrated that my first guess did not
work) indeed led to a promising candidate for the additional condition. The condition for the
unitarity is that Lo(int) annihilates the projections of the genuine scattering contributions to the
space of "free” states:
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L()(mt)P|n1> = 0 s
n) [no) + [n1) (41)

It turns out that these conditions guarantee unitarity and implies that the wave function and
coupling constant renormalizations are trivial as indeed expected on basis of quantum criticality.
In real context the condition forces U-matrix to be trivial but in p-adic case situation is different.
One can also construct very general family of unitary p-adic U-matrices forming “category”, which
is closed with respect to direct sum and direct product.

4.9 Formal proof of unitarity

Consider now the formal proof of the unitarity. Orthogonality condition guaranteing unitarity can
be expressed also as the condition

1 1
1+ XT P1 +X G,
G(m,n) = d(m,n){mim) . (42)
This condition can be written in the form
(mo|no) + (mo|P|n1) + (ma|Plng) + (m1|Pln1) = G(m,n) . (43)

The proof of unitarity splits in two basic steps.

1. Consider first the last term appearing at the left hand side:

1 k 1

free) —iz| Lo(free) —iz

P\n1> .

(ma|Plny) = fc dz(my| 3

k>0 {Lo(mt) Lo(
(44)

The first thing to observe is that (m1| has operator Lg(int) WP outmost to the right.

Since projection operator effectively forces Lg to zero, one can commute Lg(int) past the
operators 1/(Lo(free) —iz) so that it acts directly to P|n;). But by the proposed condition
Lo(int) P|ny) = 0 vanishes!

2. Consider next second and third terms at the left hand side of the unitarity condition. The
sum of these terms can be written as

(mo|Pln1) + (ma|Plno)
= i fC dZ<m0‘ Lo(frie)-i-iz Zk>0 Xk|n0> (45)

+or $o dZ(mo| Cpso(XT)F Lo(int)] Lo(frize)—ii [no) -

One might naively conclude that the sum of these terms is zero since the overall sign factors
are different (this looks especially obvious in the dirty 1/ie-approach). This is however the
case only if on mass shell states do not appear as intermediate states in terms X*. Unless
this is the case one encounters difficulties.
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3. One can project out on mass shell contribution to see what kind of contributions one ob-
tains: what happens that the conditions Lg(int)P|mi) = guarantees that these contributions
vanish! Consider the second term in the sum to see how this happens. The on mass shell
contributions from terms X*|ng) can be grouped by the following criterion. Each on mass
shell contribution can be characterized by an integer r telling how many genuinely off mass
shell powers of X appear before it. The on mass shell contributions which come after r:th X
can be written in the form X" PX*~" The sum over all these terms coming from Y. _ X"
is obviously given by

n>0

X"PY X" Tmg) = X"Plmy) =0
k>r

and vanishes sinces X" is of form ...Lg(int) and hence annihilates P|m1). Thus the condition
implying unitarity also implies that on mass shell states do not contribute to the perturbative
expansion.

The condition implies not only the unitarity of the U-matrix but also that wave function
renormalization constants are equal to one so that these cannot serve as sources of divergences. The
condition implies not only the unitarity of the U-matrix but also that wave function renormalization
constants are equal to one so that these cannot serve as sources of divergences. What is important
is that unitarity holds true for the inner products of the on mass shell projections of the scattering
states so that incoming and outgoing states span same state space. In the formal scattering theory
the proof of unitarity fails because the presence of off mass shell particles implies that incoming
and outgoing state spaces are not identical.

4.10 About the physical interpretation of the conditions guaranteing
unitarity

The conditions guaranteing unitarity allow a nice physical interpretation in p-adic context but in
real context they lead to a trivial U-matrix. This could be seen as an indication for the failure of
the perturbative approach in real context.
As already found, the condition
Lo(int)P|m1> =0

guaranteing unitarity implies that wave function renormalization is trivial. The condition also says
that the effect of the vertex operator on the ”dressed” state |m) is same as on the "bare” state
[mo):

Lo(int)|m) = Lo(int)|mo) .

A pictorial interpretation of this is that the contribution of the virtual particle cloud to any vertex is
trivial. This is very much like vanishing of the radiative corrections to coupling constants implying
that various coupling constants are not renormalized.

The invariance of the p-adic Kahler coupling strength under renormalization group is one of
the basic hypothesis of quantum TGD and there are reasons to believe that quantum criticality
is more or less equivalent with this property. The condition Lo (int)P|m;) = 0 however suggests
that this condition is much more general: all vertices are renormalization group invariants. In real
context this certainly does not make sense since the coupling constants in the real quantum field
theories for the fundamental interactions are known to run. In p-adic context situation is however
different. One can interpret RG invariance as the symmetry of the p-adic U-matrix holding true
in each sector D, of the configuration space. The dependence of the Kéhler coupling strength on
p-adic length scale L, means that continuous coupling constant evolution is effectively replaced
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with a discrete one. The dependence of ax on p dictates the dependence of the other coupling
constants on p-adic length scale.
Expressing U-matrix as

S=1+4+T,

the conditions guaranteing unitarity can be written in the form

T+TH+TiT=0 .

As already found, the conditions guaranteing unitarity imply that much stronger conditions

T+TH=0

and

T =0

hold true. These conditions obviously state that i7" is hermitian and nilpotent matrix. The
rows and columns of 41" are orthogonal vectors with vanishing length squared such that diagonal
components of T" are real. These conditions do not certainly make sense in real context since real
or complex valued hermitian nilpotent matrices are impossible mathematically. p-Adic probability
concept however allows in principle to circumvent the difficulty.

Somewhat loosely speaking, the conditions satisfied by T imply that the absorptive parts of
the forward scattering amplitudes given by 7'+ T vanish identically. Therefore scattering ampli-
tudes would be analytic functions lacking the cuts characterizing the scattering amplitudes in real
context. By unitarity the absorptive parts are proportional to TTT which therefore also vanishes:
this means vanishing total reaction rates. Thus the conditions Lg(int)P|m1) = 0 imply trivial
U-matrix in real context.

The content of the conditions Lg(int)P|m;) = 0 is that the total p-adic probability for the
scattering from a state |mg) to the states |ng) # |mo) vanishes. This means that the p-adic
probability for the diagonal scattering |mgo) — |mo) is exactly one. As far as total scattering rates
are considered, p-adic many-particle states behave therefore like many-particle states of a free field
theory.

This mechanism would imply an elegant description of elementary particles. In real context
the concept of elementary particle has some unsatisfactory features: the reason is basically that
the concept of free particle is in conflict with the non-triviality of the interactions. For instance,
in case of unstable particles one is in practice forced to introduce decay widths I' making particle
energies complex: FF — FE +I'. This kind of mathematical trickery takes into account the finite
lifetime of the particle in a rather ugly manner. p-Adic decay widths however vanish and particles
behave like stable particles as far as total p-adic decay rates are considered. Real decay widths
are of course non-vanishing and are in TGD framework parameters related to the time evolution
by quantum jumps rather than unitary time evolution by U and real decay widths have absolutely
nothing to do with the energy of the particle.

It has been also found that total p-adic probabilities for the transitions between sectors D,
and Dp, p1 # p2 of the configuration space must vanish by internal consistency requirements. The
proposed scenario generalizes this hypothesis from the level of the configuration space sectors to
the level of quantum states. One consequence of the generalized hypothesis is that the total p-adic
probability for a transition changing the values of the zero mode coordinates vanishes although
U-matrix elements for the transitions changing the values of the zero modes and even the value of
p, are non-vanishing.

Real scattering probabilities can be deduced from the p-adic probabilities by canonical iden-
tification map followed by normalization to one and total reaction rates are determined by real
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probabilities. Unitarity does not make sense in the real context since in general it is not possible
to assign U-matrix to real reaction rates. There are however reasons to expect that at the limit of
large p-adic prime real unitarity is good approximation although total p-adic reaction rates must
still vanish. p-Adic unitarity provides also an elegant solution to the infrared divergences leading
to infinite total reaction rates and forward scattering amplitudes.

It must be emphasized that p-adic co-homology is possible only for p-adic U-matrices describing
physics of cognitive regions. It is also quite possible that p-adic co-homology could be regarded
as a symmetry of p-adic U-matrix realized as replacement S — S + T, [S,T] = 0 leaving total
p-adic scattering rates invariant. p-Adic U-matrix could also have S; = 1+ 4T representing p-adic
co-homology as a tensor factor: the vanishing of p-adic total cross sections could perhaps be seen
as a mathematical expression of the fact that cognition is pure imagination and has no physical
effects.

5 Number theoretic approach to the construction of U-
matrix

The bridge between classical and quantum provided by infinite primes allows to make one step in
the task of deriving the U-matrix of quantum TGD.

5.1 U-matrix as Glebch-Gordan coefficients

U-matrix elements can be identified as Glebsch-Gordan coefficients between interacting and free
representations of the super-canonical algebra. These representations are in turn defined as a
union of absolute minima for composite 3-surfaces and by the absolute minimum for the union of
composite 3-surfaces. These surfaces are coded by infinite primes mapped to products of irreducible
polynomials with complex rational coefficients.

The Fock states coded by the infinite primes correspond to the states of a hyper-octonionic
arithmetic quantum field theory second quantized again and again. Quantum field theory which is
based on the notion of point like particles cannot describe quantum TGD based on generalization
of particle concept. Thus the natural interpretation of the Fock states is as ground states of super-
canonical representations. This view is consistent with the interpretation of the physical states as
configuration space spinor fields assigning to a given 3-surface infinite number of possible states.

U-matrix elements can be identified as matrix elements between the incoming states of super-
canonical representations created from the ground states associated with the tensor product of
the ground states associated with Y;?. The superalgebra generators creating the excited incoming
states are super-algebra generators associated with Y;> whereas the outgoing states are created by
the super-algebra generators associated with UY;3. The challenge is to relate the super-algebra
basis to each other.

The basic idea of rational physics approach suggests that U-matrix is complex rational or at
most belongs to an extension of rationals defining finite extensions of p-adic numbers for every
prime p. Rationality would imply that the phase factors involved are Pythagorean. This require-
ment must be extremely strong when combined with general physical principles. Even the weaker,
and presumably more realistic, condition that phase factors belong to finite-dimensional extensions
of p-adic numbers is very strong. An analogous constraint has been analyzed already earlier in the
model of CKM mixing and together with some general physical inputs it was found to fix CKM
matrix highly uniquely [F4]. Complex rationality would allow to define p-adic counterparts of the
U-matrix.
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5.2 Zeros of Riemann Zeta and U-matrix

The observation that the zeros of Riemann Zeta are excellent candidates for the conformal weights
labelling the generators of super-canonical algebra [B2, B3] predicts that Rieman Zeta and U-
matrices are closely related. A further natural speculation is that the zeros of polyzetas ((z1, ..., 2Kk )
label the super-canonical conformal weights of K-particle bound states. The vanishing of loop
corrections could be understood as being due to the fact that they are proportional to polyzetas
having super-canonical conformal weights as arguments. This speculation was inspired by the fact
that polyzetas with integer arguments emerge in loop corrections of quantum field theories.

The construction of scalar propagator discussed in ”Equivalence of Loop Diagrams with Tree
Diagrams and Cancellation of Infinities in Quantum TGD” was based on the assumption that
scalar propagator can be regarded as a partition function in super-canonical algebra. The masses
for the predicted universal spectrum of resonances is expressible in terms of zeros of Riemann Zeta.
A similar universal spectrum of resonances (which are not poles but delta functions) is predicted
also when 1/L replaces scalar propagator. Ultraviolet cutoff appears automatically and in p-adic
context one must identify it as p-adic length scale by number theoretical existence requirement.
p-Adic length hierarchy scale emerges thus naturally.

A further prediction is that a hierarchy of propagators results and is labelled by the the hierarchy
of sets {y1 < y2 < ... < yg} of imaginary parts y; > 0 of the non-trivial zeros of Zeta ordered
by there magnitude. This cutoff hierarchy corresponds to a finite p-adic phase resolution (the
better the phase resolution the higher the algebraic dimension of the extension of p-adic numbers
needed). The hypothesis that ¢", ¢ any prime, belongs to a finite extension of R, for all primes p
is necessary for the p-adicization of the propagator.

5.3 Reduction of the construction of U-matrix to number theory for
infinite integers?

The fact that integers correspond to many-particle states in arithmetic quantum field theory, sug-
gests that the space-time surface associated with an infinite integer N provides the representation
for the interacting space-time surface and the space-time surfaces associated with the prime factors
P of N provide the representation for the space-time surfaces associated with incoming states. This
means extremely elegant solution to three problems: that of finding interacting absolute minima
of Kahler action; that of finding ground states of super-canonical representations; and that of con-
structing the operators creating free (incoming) and interacting (outgoing) states. The knowledge
of the ground states as functionals of 3-surface labelled by infinite primes are absolutely essential
for the construction of U-matrix but this is not enough: the classical description of the interactions
by assigning to the infinite integer interacting space-time surface X4(U;Y;?) is equally important
element of the construction.

Interacting space-time surfaces should approach to non-interacting surfaces in asymptotic re-
gions. This is possible if the conditions 9, P;(p, ¢) = 0 and P;(p, q) = 0 are satisfied simultaneously
in the asymptotic regions associated with various particles present in the many particle state rep-
resented by the infinite integer V. These conditions are exactly satisfied only in single point but
in practice the failure to satisfy these conditions might be very small everywhere except in the
regions near the interaction vertices.

If this picture is correct, number theory for infinite integers would provide the description of the
interactions between the composite primes of the infinite integer representing the physical state.
Note however that appearance of higher powers of same prime means that single four-surface must
be counted several times as incoming state geometrically: this is somewhat counter-intuitive but
does not have any effects at Fock space level.

This step does not fully solve the problem of constructing U-matrix. U-matrix elements are
functionals of the initial and final 3-surface and actually kind of a local kernel for U-matrix is in
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question. To get U-matrix proper one must perform configuration space integrations. Integration
over the zero modes is not needed if a localization in the zero modes occurs in each quantum
jump. What remains to be done is the integral defining the inner product in the fiber degrees of
freedom representing the degrees of freedom where configuration space metric is nontrivial. Since
everything in fiber degrees of freedom is fixed by super-canonical symmetry, there are good hopes
that the calculation reduces to a purely group-theoretical construction.

5.4 Does U-matrix possess adelic decomposition?

Each p-adic (with p understood in very general sense) observer would see some aspect of the
physical state and only by the combination of all these aspects a complete characterization of the
physical state would result. This representation of the quantum state is very much analogous to
the representation of a real number, and at the higher level of abstraction to the string model
vacuum amplitude, provided by the adelic formula.

For instance, U-matrix elements could be adelic products over U-matrix elements associated
with p-adic number fields corresponding to ...-adic primes in the algebraic extension of infinite
hyper-octonionic primes and that generalization of adelic formula holds true for the moduli squared
of U-matrix elements as product of -adic moduli squared for ...-adic U-matrix elements. ...-adic
representations would represent the state as seen by a particular observer characterized by a
particular ...-adic topology. This view would conform with the vision of TGD inspired theory of
consciousness about a p-adic hierarchy of consciousness giving increasingly refined representations
of the physical state.

The theory should also be able to describe the physics as seen by an observer identified as
a space-time sheet characterized by a given p-adic topology. Thus the p-adicization of at least
U-matrix might be necessary in order to describe physics in the language understood by a given
observer. p-Adicization for p mod 4 = 3 is achieved if U-matrix is a complex rational matrix
so that matrix elements are expressible in terms of Pythagorean phases. For p mod 4 = 1 the
existence of /—1 as a p-adic number might pose some difficulties probably overcome by using the
notion of G-adic numbers in which p-adic p is replaced with the prime of G-adic number field
satisfying GG = p. The idea that p-adic space-time regions code into their geometry quantum
numbers suggests that they could also provide a representation for U-matrix (certainly not faithful).
Perhaps the dynamics of the second quantized induced spinors on p-adic space-time sheets could
provide this representation.

If the p-adic counterparts of U-matrix exists, one can also consider the possibility that the
p-adic counterpart of the configuration space vacuum functional appearing in the definition of
the U-matrix exists p-adically. Vacuum functional is exponent of the Kéhler function and exists
p-adically for all values of p only in case that it is a rational number. One cannot exclude the
possibility that the exponent of the Kéhler function has rational values for the absolute minima
of the Kahler action for some critical value of Kéhler coupling depending on p. The rationality of
the exponent of the Kahler action implies that it corresponds to the hyperbolic counterpart of a
Pythagorean phase so that also cosh(K) and sinh(K) are rational numbers very closely related to
rational numbers defining Pythagorean phases. For C'P, type extremals this is true if G/R? is a
rational number but in the general case situation is different. The assumption that critical value
of Kahler strength depends on p allows some freedom in this respect.

6 Appendix: p-Adic co-homology
If the p-adic T-matrix is hermitian it must be nilpotent by the unitarity of S-matrix and therefore

defines a co-homology theory. In the following very general construction of T-matrices defining
p-adic co-homologies is carried out.

55



6.1 p-Adic T-matrices could define p-adic co-homology

Let the p-adic matrix ¢7" be a hermitian nilpotent matrix. Therefore one can regard iT as an
exterior derivative operator defining co-homology. The construction of the co-homology defined
by T reduces to the task of finding those vectors of the state space which are mapped to zero
by ¢T but which do not belong to the zero norm subspace defined by 7. There is a nice par-
allel with super-symmetric theories: Hermitian super charges are nilpotent operators. Also the
BRST charges appearing in the quantization of Yang Mills theories and defining physical states as
BRST co-homology are nilpotent and Hermitian. BRST charges appear also in the construction
of physical states satisfying Super Virasoro conditions. Super and BRST charges are presum-
ably not representable as matrices but it is perhaps p-adicity what makes the representation as
infinite-dimensional matrix possible. Super symmetric situation suggests that state space has de-
composition into states labelled by ”T-parity” instead of R-parity: states with R-parity zero are
states which do not belong to the image of i1 and the states with belong to the image of 1" have
T-parity one.

In case that T-co-homology is trivial, the states in these two spaces are in one-one correspon-
dence. In a more general case, state space decomposes to the direct sum Vy + Vi + iT'V;, where
Vo corresponds to co-homologically nontrivial subspace mapped to zero by ¢1" and V; corresponds
to the states which are not mapped to zero by 1. Apart from a multiplicative constant, iT" can
defined as a ”projection operator” to the space of exact states:

iT = Z |Ter){ex|
k

where e, are p-adic zero norm states. The rows of 1" span a linear subspace for which every vector
has vanishing norm and 7" maps state space to this zero-norm subspace. Thus the construction of
the matrices T" reduces to that of finding zero-norm subspaces of the entire state space.

Physically the co-homologically nontrivial states belonging to V; and mapped to zero by T’
(closed but not exact states) are noninteracting states remaining invariant under the ”time evolu-
tion” operator U. These states are obviously natural candidates for the fixed points of the time
evolution by quantum jumps.

6.2 About the construction of T-matrices

7T matrices are hermitian nilponent matrices and it not at all clear whether this kind of matrices
exist at all. Certainly they do not exist in real context. It is quite easy to construct p-adic vectors
having vanishing length squared. Possible problems are related to the orthogonality requirement
for the rows of T

It is easy to check that nilpotent hermitian p-adic valued 2 x 2 matrices exist. Assume that
p mod 4 = 3 so that i = \/—1 is not ordinary p-adic number. The most general form of this matrix

is
a b
b —a ’

b = by +iby |

V= (6)

By hermiticity a must be ”p-adically real” number. This is indeed possible in p-adic context but
both b; and by must be obviously non-vanishing.

One can construct infinite number of 2N x 2 N-dimensional matrices i1 as direct sums 17 ®iTHP
... and tensor products i1} ® T ® ... of two-dimensional ¢T-matrices and ¢T-matrices constructed

i

a
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from them. T = 0 is also acceptable T-matrix in 1 x 1-dimensional case and one can include this
matrix to direct sum to obtain 2N 4 1 x 2N + 1-dimensional T-matrices. Clearly, the ”category”
constructed in this manner is closed with respect to @ and ® operations. This category is also closed
under tensor multiplication by Hermitian matrices since the tensor product of arbitrary Hermitian
matrix with Hermitian and nilpotent matrix is also Hermitian and nilponent: Hermitian nilpotency
is infectuous disease! More concretely, by taking arbitrary Hermitian matrix and multiplying its
elements with Hermitian and nilponent matrix one obtains new Hermitian and nilponent matrix.
Also the sum of commuting Hermitian and nilpotent matrices has same properties. It should be
noticed that all possible T-matrices form also a “category” in the proposed sense.

An interesting question is whether all (2N +1) x (2N + 1) dimensional matrices are direct sums
of 2N x 2N-dimensional matrix and 1 x 1 dimensional zero-matrix. The study of 3-dimensional
case suggests that this is indeed the case. In 3-dimensional case it seem that no T-matrices exist.
One can write the solution ansatz as

ay b1 by
iT = by ax by
b2 bg as
bi = bil +Zb12 ) 1= 17273 )

ap = €y —|b1|2 - |b2|2 )

az = e/—[b1|* —|b3]?

az = €3\ 7|b2|2 - |l73|2 . (47)
The constraint that a; are “p-adically real numbers” is nontrivial. There 6 unkowns b;. The

square roots defining a; are unique only modulo sign factors €;. Formally there are 6 orthogonality
conditions which can be written as

byb
ay +az = —%7
1
b1 b:
ay+ag = _;)72‘37
b1b
a2+a3 = 7;)732 .

(48)
One one writes formally b; in the form b; = xz/Qexp(iéi), where 333/2 is taken to be real: exponential
factor is however not p-adic exponent function. One finds that the equations stating the vanishing
of the inner products give same condition for the phases exp(i¢;) defined as

. b;
exp(ig;) = 72
xT.

K3

The equation reads as

exp(ig1) = exp(igg)exp(—ids) . (49)

The equation has now number theoretic contents and it is not at all obvious that solutions exist.
Thus the number of equations reduces to 4.
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Taking the squares of both sides of the equations 48 one obtains equations for the moduli of
the z; = |b;]2. The squares of the equations 48 give

2a1a2x1 = x2x3+x1(2x1 + X2 +£E3) s
2a1a3:z:2 = X1T3 +1‘2(21’2 +l’3 +I’1) y
2a0a03T3 = T1To + 33‘3(2373 + 1 + JJQ) . (50)

These equations are clearly cyclically symmetric.
By taking squares again one obtains 3 equations, which are degree 4 homogenous polynomials
in variables x;. The three cyclically symmetric equations read

Pi(z1,20,73) = 427 (zi + 2i41) (T + Tig2)
—  [@ip1@ige + (20 + g1 + $i+2)]2 =0 .
(51)

where one has i + 3 = 4. P; is homogenous polynomial in its arguments having the general form
Pi(w1, @9, 23) = 42} + .o+ 2777,

From a given solution (if it exists) one obtains a new solution by multiplying it with a p-adic
number allowing p-adically real square root. This means that one can scale z; simultaneously by
a square of ”p-adically real” number. One can fix the solution by fixing say x3 to some arbitrarily
chosen value. This means that one has 3 equations and 2 unknowns. This suggests that the
three polynomial equations do not allow any solutions. This would mean that “irreducible” 3 x 3-
matrices i7" do not exist. An interesting conjecture is that 2-dimensional T-matrices are the only
irreducible T-matrices and hence together with 1 x 1-dimensional zero matrix generate the category
of all T-matrices. This would be in line with the fact that fermionic oscillator operators are used
to construct Fock states.

To sum up, the conditions Lo(int)|m;) = 0 make sense only p-adically and force the theory to
be as close to free theory as it can possibly be. An especially attractive feature is the reduction of
the construction of the p-adic U-matrix to a generalized co-homology theory. What is especially
nice and perhaps of practical importance is that allowed U-matrices form “category” with respect
to direct sum and direct product operations. TGD based construction of U-matrix could realize
Wheeler’s great dream that physics could be reduced to the almost trivial statement ”"boundary has
no boundary”! Of course, one can regard the success of the real unitarity as an objection against
p-adic approach and one must therefore keep mind open for the weakening of the conditions.

6.3 What is the physical interpretation of the p-adic co-homology?

There are interesting questions related to the physical interpretation of the p-adic co-homology
which makes sense only for finite-p p-adic number fields as is easy to see. The simplest example
of T-matrix satisfying p-adic co-homology is

T:[“ b], a2 +b02=0 .
b —a

This condition can be satisfied if v/—1 exists p-adically so that one has p mod 4 = 1. A slightly
more complicated example making sense for the extension of p mod 4 = 3 with imaginary unit is

T{Z b},cﬁ+%0.

—a
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In this case the conditions are satisfied if —bb does possesses square root.

p-Adic S-matrix makes sense as an S-matrix for the dynamics of a cognitive model and p-adic
co-homology could relate to the physics of cognition. The vanishing of the total p-adic scattering
probabilities could have interpretation in terms of the concept of monitoring [E5]: if the cognitive
system is not monitored, which means that one is only interested on whether scattering occurs or
not, but not on which sub-space of Hilbert space final state is, then total p-adic scattering prob-
ability and, of course, also its real counterpart obtained by the canonical identification vanishes.
Nothing happens in the cognitive system which is not monitored. This of course is natural in some
sense natural since cognitive representation of dynamics is useless unless it is not monitored!

The most conservative view is that p-adic co-homology represents nothing more than a BRST
type symmetry of the p-adic S-matrix leaving the measurement resolution defined by the decom-
position of the state space to a direct sum of subspaces invariant [C1]. The fact that only the total
scattering cross sections remain invariant in the transformations T — T + it, however suggests
that the p-adic T-matrices T + it, where the matrix ¢ satisfies the conditions

t=tt , 2=0, [t,T]=0,

could define a more detailed finite-p p-adic dynamics accompanying the dispersion between sectors
Dp labelled by infinite primes. This dynamics would be invisible at the level of the total scattering
probabilities. Also the tensor product (1 + ¢T) ® (1 + it), where ¢ satisfies p-adic co-homology is
possible. Here t could represent the detailed finite-p p-adic dynamics. As far as the structure of G
is considered, both T + it structure and (1+ ¢T) ® (1 + it) structure are invisible so that G would
fix only the topological aspects of the dynamics.
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